Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752300

RESUMO

In this study, we successfully synthesized selenium nanoparticles (P-SeNPs) using an environment-friendly approach. This method involves utilizing the aqueous peel extract of Benincasa hispida (ash gourd) in combination with selenium salt. Through our innovative procedure, we harnessed the impressive bio-reduction capabilities, therapeutic potential, and stabilizing attributes inherent in B. hispida. This results in the formation of P-SeNPs with distinct and noteworthy qualities. Our findings were thoroughly substantiated through comprehensive characterizations employing various techniques, including ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential analysis, and Fourier transform infrared spectroscopy (FTIR). The nanoparticles exhibited a spherical shape, considerable size (22.32 ± 2 nm), uniform distribution, and remarkable stability (-24 mV), all of which signify the effective integration of the phytoconstituents of B. hispida. Furthermore, P-SeNPs displayed robust antibacterial efficacy against pathogenic bacterial strains, as indicated by their low minimum inhibitory concentration values. Our research also revealed the remarkable ability of P-SeNPs to fight cancer, as demonstrated by their impressive IC50 value of 0.19 µg/mL against HeLa cells, while showing no harm to primary human osteoblasts, while simultaneously demonstrating no toxicity toward primary human osteoblasts. These pivotal findings underscore the transformative nature of P-SeNPs, which holds promise for targeted antibacterial treatment and advancements in cancer therapeutics. The implications of these nanoparticles extend to their potential applications in therapies, diagnostics, and various biomedical contexts. Notably, the environmentally sustainable synthesis process and exceptional properties established this study as a significant milestone in the field of nanomedicine, paving the way for a more promising and health-enhancing future.

2.
Biomedicines ; 11(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37760986

RESUMO

The optimal treatment of diabetes (in particular, type 1 diabetes-T1D) remains a challenge. Closed-loop systems (implants/inserts) provide significant advantages for glucose responsivity and providing real-time sustained release of rapid-acting insulin. Concanavalin A (ConA), a glucose affinity agent, has been used to design closed-loop insulin delivery systems but not without significant risk of leakage of ConA from the matrices and poor mechanical strength of the hydrogels impacting longevity and control of insulin release. Therefore, this work focused on employing a thermoresponsive co-forming matrix between Pluronic F-127 (PL) and structurally robust chitosan (CHT) via EDC/NHS coupling (i.e., covalent linkage of -NH2 from CHT and ConA to the -COOH of PL). The system was characterized for its chemical structure stability and integrity (FTIR, XRD and TGA), injectability, rheological parameters and hydrogel morphology (Texture Analysis, Elastosens TM Bio2 and SEM). The prepared hydrogels demonstrated shear-thinning for injectability with a maximum force of 4.9 ± 8.3 N in a 26G needle with sol-gel transitioning from 25 to 38 °C. The apparent yield stress value of the hydrogel was determined to be 67.47 Pa. The insulin loading efficiency within the hydrogel matrix was calculated to be 46.8%. Insulin release studies revealed glucose responsiveness in simulated glycemic media (4 and 10 mg/mL) over 7 days (97%) (305 nm via fluorescence spectrophotometry). The MTT studies were performed over 72 h on RIN-5F pancreatic cells with viability results >80%. Results revealed that the thermoresponsive hydrogel is a promising alternative to current closed-loop insulin delivery systems.

3.
Pharmaceutics ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959394

RESUMO

Insulin is a peptide hormone that is key to regulating physiological glucose levels. Its molecular size and susceptibility to conformational change under physiological pH make it challenging to orally administer insulin in diabetes. The most effective route for insulin delivery remains daily injection. Unfortunately, this results in poor patient compliance and increasing the risk of micro- and macro-vascular complications and thus rising morbidity and mortality rates in diabetics. The use of 3D hydrogels has been used with much interest for various biomedical applications. Hydrogels can mimic the extracellular matrix (ECM) and retain large quantities of water with tunable properties, which renders them suitable for administering a wide range of sensitive therapeutics. Several studies have demonstrated the fixation of insulin within the structural mesh of hydrogels as a bio-scaffold for the controlled delivery of insulin. This review provides a concise incursion into recent developments for the safe and effective controlled delivery of insulin using advanced hydrogel platforms with a special focus on sustained release injectable formulations. Various hydrogel platforms in terms of their methods of synthesis, properties, and unique features such as stimuli responsiveness for the treatment of Type 1 diabetes mellitus are critically appraised. Key criteria for classifying hydrogels are also outlined together with future trends in the field.

4.
J Ethnopharmacol ; 279: 114390, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34224812

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine (RPW) is a natural beverage obtained from the R. hookeri consumed for refreshment and medicinal purposes. For medicinal purposes, it is used singly or as macerating agent for other medicinal plants for the treatment of several diseases. AIM: This study investigates the effect of Raffia palm wine on dysregulated lipid metabolic pathways in testicular tissues of type 2 diabetic (T2D) rats. METHODS: Raffia palm wine (150 and 300 mg/kg bodyweight) was administered to two T2D groups respectively, another T2D group was not administered treatment and served as negative control, while metformin served as the standard drug. After 6 weeks of treatment, the rats were sacrificed, and the testes collected. After weighing, the organs were homogenized in 20% methanol/ethanol and centrifuged at 20,000 g to extract the lipid metabolites. RESULTS: GC-MS analysis of the supernatants revealed an alteration of the metabolites on induction of T2D, with concomitant generation of 10 metabolites. Raffia palm wine inhibited the T2D-generated metabolites while replenishing cholesterol and squalene levels, with concomitant generation of 7 and 8 metabolites for low and high dose treatment respectively. Pathway enrichment analysis of the metabolites revealed a decreased level of steroid biosynthesis and increased level of fatty acid biosynthesis. Raffia palm wine inactivated glycerolipid, fatty acid, and arachidonic acid metabolisms, fatty acid biosynthesis and fatty acid elongation in mitochondria pathways, and activated pathways for plasmalogen synthesis, mitochondrial beta-oxidation of long chain saturated fatty acids. CONCLUSION: The replenishment and generation of these metabolites and additional ones as well as activation of pathways involved in energy generation, phospholipids, antioxidant activity, steroidogenesis and spermatogenesis suggest a therapeutic effect of Raffia palm wine against hyperglycemic-induced testicular dysfunction.


Assuntos
Bebidas Alcoólicas , Columbiformes , Diabetes Mellitus Experimental/complicações , Metabolismo dos Lipídeos/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Cromatografia Gasosa-Espectrometria de Massas , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/uso terapêutico , Ratos , Doenças Testiculares/tratamento farmacológico , Doenças Testiculares/etiologia , Testículo/metabolismo
5.
Polymers (Basel) ; 11(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443473

RESUMO

Diabetes mellitus (DM) is a chronic metabolic illness estimated to have affected 451 million individuals to date, with this number expected to significantly rise in the coming years. There are two main classes of this disease, namely type 1 diabetes (T1D) and type 2 diabetes (T2D). Insulin therapy is pivotal in the management of diabetes, with diabetic individuals taking multiple daily insulin injections. However, the mode of administration has numerous drawbacks, resulting in poor patient compliance. In order to optimize insulin therapy, novel drug delivery systems (DDSes) have been suggested, and alternative routes of administration have been investigated. A novel aspect in the field of drug delivery was brought about by the coalescence of polymeric science and nanotechnology. In addition to polymeric nanoparticles (PNPs), insulin DDSes can incorporate the use of nanoplatforms/carriers. A combination of these systems can bring about novel formulations and lead to significant improvements in the drug delivery system (DDS) with regard to therapeutic efficacy, bioavailability, increased half-life, improved transport through physical and chemical barriers, and controlled drug delivery. This review will discuss how recent developments in polymer chemistry and nanotechnology have been employed in a multitude of platforms as well as in administration routes for the safe and efficient delivery of insulin for the treatment of DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...