Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6157, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257992

RESUMO

The development of low-Platinum content polymer electrolyte fuel cells (PEFCs) has been hindered by inexplicable reduction of oxygen reduction reaction (ORR) activity and unexpected O2 mass transport resistance when catalysts have been interfaced with ionomer in a cathode catalyst layer. In this study, we introduce a bottom-up designed spherical carbon support with intrinsic Nitrogen-doping that permits uniform dispersion of Pt catalyst, which reproducibly exhibits high ORR mass activity of 638 ± 68 mA mgPt-1 at 0.9 V and 100% relative humidity (RH) in a membrane electrode assembly. The uniformly distributed Nitrogen-functional surface groups on the carbon support surface promote high ionomer coverage directly evidenced by high-resolution electron microscopy and nearly humidity-independent double layer capacitance. The hydrophilic nature of the carbon surface appears to ensure high activity and performance for operation over a broad range of RH. The paradigm challenging large carbon support (~135 nm) combined with favourable ionomer film structure, hypothesized recently to arise from the interactions of an ionic moiety of the ionomer and Nitrogen-functional group of the catalyst support, results in an unprecedented low local oxygen transport resistance (5.0 s cm-1) for ultra-low Pt loading (34 ± 2 µgPt cm-2) catalyst layer.

2.
Inorg Chem ; 59(14): 10197-10207, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32584561

RESUMO

Effective hydrogen (H2) production with surface engineering of less active catalysts by an innovative approach is followed here. In this work, a non-noble 2H phase of VS2 layers, which showed poor activity for hydrogen evolution reaction (HER) in 0.5 M H2SO4, was made highly active by decorating palladium (Pd) nanoparticles (NPs) over VS2 layers. A density functional theory (DFT) study confirmed the successful binding of Pd with VS2, and the bond length in a Pd4 tetrahedron was measured to be 2.60 Å. In VS2-Pd, Pd as a Pd4 tetrahedron is pointed toward the VS2 layer, and the calculated Pd-S bond distance is 2.42 Å with some expansion of three Pd-Pd bonds (2.85 Å). From the density of states, it was confirmed that the band gap was too high for VS2 (0.2 eV; 2H phase) and was reduced to nearly zero in VS2-Pd (0.05 eV). In the electrocatalytic HER part, the obtained ΔGH values from DFT were 0.05, -0.45, and 0.22 eV for VS2/Pd4, Pd4, and VS2, respectively, which imply that VS2-Pd4 had improved HER activity compared to pristine VS2 and Pd4. A concentration-dependent study was carried out with molar ratios of Pd at 0.01, 0.05, and 0.1 M with VS2 layers. From the HER polarization study, VS2-Pd (0.05 M) showed an overpotential of 157 mV at 20 mA cm-2, which is 373 mV less than only VS2 with a Tafel slope of 75 mV dec-1 with overwhelming stability. These highly promising results will be interesting to make less active stable phases by incorporating metal NPs for efficient and stable H2 production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...