Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1231486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790702

RESUMO

microRNAs (miRNAs) play a multifaceted role in the pathogenesis of Alzheimer's disease (AD). miRNAs regulate several aspects of the disease, such as Aß metabolism, tau phosphorylation, neuroinflammation, and synaptic function. The dynamic interaction between miRNAs and their target genes depends upon various factors, including the subcellular localization of miRNAs, the relative abundance of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. The miRNAs are released into extracellular fluids and subsequently conveyed to specific target cells through various modes of transportation, such as exosomes. In comparison, circular RNAs (circRNAs) are non-coding RNA (ncRNA) characterized by their covalently closed continuous loops. In contrast to linear RNA, RNA molecules are circularized by forming covalent bonds between the 3'and 5'ends. CircRNA regulates gene expression through interaction with miRNAs at either the transcriptional or post-transcriptional level, even though their precise functions and mechanisms of gene regulation remain to be elucidated. The current stage of research on miRNA expression profiles for diagnostic purposes in complex disorders such as Alzheimer's disease is still in its early phase, primarily due to the intricate nature of the underlying pathological causes, which encompass a diverse range of pathways and targets. Hence, this review comprehensively addressed the alteration of miRNA expression across diverse sources such as peripheral blood, exosome, cerebrospinal fluid, and brain in AD patients. This review also addresses the nascent involvement of circRNAs in the pathogenesis of AD and their prospective utility as biomarkers and therapeutic targets for these conditions in future research.

2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511524

RESUMO

Stem cells derived from human exfoliated deciduous teeth (SHED) have emerged as an alternative stem cell source for cell therapy and regenerative medicine because they are readily available, pose fewer ethical concerns, and have low immunogenicity and tumourigenicity. SHED offer a number of advantages over other dental stem cells, including a high proliferation rate with the potential to differentiate into multiple developmental lineages. The therapeutic effects of SHED are mediated by multiple mechanisms, including immunomodulation, angiogenesis, neurogenesis, osteogenesis, and adipogenesis. In recent years, there is ample evidence that the mechanism of action of SHED is mainly due to its paracrine action, releasing a wide range of soluble factors such as cytokines, chemokines, and trophic factors (also known as 'secretome') into the local tissue microenvironment to promote tissue survival and recovery. This review provides an overview of the secretome derived from SHED and highlights the bioactive molecules involved in tissue regeneration and their potential applications in regenerative medicine.


Assuntos
Células-Tronco , Dente Decíduo , Humanos , Osteogênese , Citocinas , Neurogênese , Diferenciação Celular , Polpa Dentária
3.
J Alzheimers Dis ; 94(s1): S21-S44, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334592

RESUMO

BACKGROUND: Centella asiatica (L.) (C. asiatica) is commonly known in South East and South East Asia communities for its nutritional and medicinal benefits. Besides being traditionally used to enhance memory and accelerate wound healing, its phytochemicals have been extensively documented for their neuroprotective, neuroregenerative, and antioxidant properties. OBJECTIVE: The present study aims to investigate the effects of a standardized raw extract of C. asiatica (RECA) on hydrogen peroxide (H2O2)-induced oxidative stress and apoptotic death in neural-like cells derived from mouse embryonic stem (ES) cell line. METHODS: A transgenic mouse ES cell (46C) was differentiated into neural-like cells using 4-/4+ protocol with addition of all-trans retinoic acid. These cells were then exposed to H2O2 for 24 h. The effects of RECA on H2O2-induced neural-like cells were assessed through cell viability, apoptosis, and reactive oxygen species (ROS) assays, as well as neurite length measurement. The gene expression levels of neuronal-specific and antioxidant markers were assessed by RT-qPCR analysis. RESULTS: Pre-treatment with H2O2 for 24 hours, in a dose-dependent manner, damaged neural-like cells as marked by a decrease in cell viability, substantial increase in intracellular ROS accumulation, and increase in apoptotic rate compared to untreated cells. These cells were used to treat with RECA. Treatment with RECA for 48 h remarkably restored cell survival and promoted neurite outgrowth in the H2O2- damaged neurons by increasing cell viability and decreasing ROS activity. RT-qPCR analysis revealed that RECA upregulated the level of antioxidant genes such as thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1) of treated cells, as well as the expression level of neuronal-specific markers such as Tuj1 and MAP2 genes, suggesting their contribution in neuritogenic effect. CONCLUSION: Our findings indicate that RECA promotes neuroregenerative effects and exhibits antioxidant properties, suggesting a valuable synergistic activity of its phytochemical constituents, thus, making the extract a promising candidate in preventing or treating oxidative stress-associated Alzheimer's disease.


Assuntos
Doença de Alzheimer , Centella , Animais , Camundongos , Peróxido de Hidrogênio/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Centella/química , Centella/metabolismo , Estresse Oxidativo , Apoptose , Animais Geneticamente Modificados , Linhagem Celular , Sobrevivência Celular , Células-Tronco Embrionárias
4.
Life (Basel) ; 12(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36294897

RESUMO

Persicaria minor (Huds.) Opiz is an herb with anti-inflammatory, antioxidant, and anti-atherosclerosis effects. Nevertheless, the mechanism underlying its anti-atherosclerosis effect is poorly comprehended. This in vitro study assessed the protective effects of standardized aqueous extract of P. minor leaves (PM) on tumor necrosis factor-α (TNF-α)-induced monocyte adhesion to human umbilical vein endothelial cells (HUVEC), which is one of the pivotal early steps in atherogenesis. The results showed that PM decreased the mRNA and protein expression of cellular adhesion molecules, vascular adhesion molecule-1 and intercellular adhesion molecule-1, resulting in reduced adhesion of monocytes to HUVEC. Additionally, PM inhibited nuclear factor kappaB (NF-κB) activation as indicated by reduced NF-κB p65 levels in TNF-α-induced HUVEC. Overall, PM could prevent in vitro atherogenesis by inhibiting NF-κB activation and adhesion of monocytes to HUVEC. The effects of PM are probably mediated by its bioactive compound, quercetin-3-O-glucuronide. The findings may provide a rationale for the in vivo anti-atherosclerosis effect of PM, and support its potential use in atherosclerosis.

5.
Bosn J Basic Med Sci ; 21(1): 98-110, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32156249

RESUMO

One of the strategies in the establishment of in vitro oxidative stress models for neurodegenerative diseases, such as Alzheimer's disease (AD), is to induce neurotoxicity by amyloid beta (Aß) peptides in suitable neural cells. Presently, data on the neurotoxicity of Aß in neural cells differentiated from stem cells are limited. In this study, we attempted to induce oxidative stress in transgenic 46C mouse embryonic stem cell-derived neurons via treatment with Aß peptides (Aß1-42 and Aß25-35). 46C neural cells were generated by promoting the formation of multicellular aggregates, embryoid bodies in the absence of leukemia inhibitory factor, followed by the addition of all-trans retinoic acid as the neural inducer. Mature neuronal cells were exposed to different concentrations of Aß1-42 and Aß25-35 for 24 h. Morphological changes, cell viability, and intracellular reactive oxygen species (ROS) production were assessed. We found that 100 µM Aß1-42 and 50 µM Aß25-35 only promoted 40% and 10%, respectively, of cell injury and death in the 46C-derived neuronal cells. Interestingly, treatment with each of the Aß peptides resulted in a significant increase of intracellular ROS activity, as compared to untreated neurons. These findings indicate the potential of using neurons derived from stem cells and Aß peptides in generating oxidative stress for the establishment of an in vitro AD model that could be useful for drug screening and natural product studies.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Células-Tronco Embrionárias Murinas/citologia , Neurônios/metabolismo , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/patologia , Animais , Diferenciação Celular , Sobrevivência Celular , Camundongos , Estresse Oxidativo
6.
Rev Neurosci ; 31(5): 521-538, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32126019

RESUMO

Cerebral ischemia is a result of insufficient blood flow to the brain. It leads to limited supply of oxygen and other nutrients to meet metabolic demands. These phenomena lead to brain damage. There are two types of cerebral ischemia: focal and global ischemia. This condition has significant impact on patient's health and health care system requirements. Animal models such as transient occlusion of the middle cerebral artery and permanent occlusion of extracranial vessels have been established to mimic the conditions of the respective type of cerebral ischemia and to further understand pathophysiological mechanisms of these ischemic conditions. It is important to understand the pathophysiology of cerebral ischemia in order to identify therapeutic strategies for prevention and treatment. Here, we review the neuropathologies that are caused by cerebral ischemia and discuss the mechanisms that occur in cerebral ischemia such as reduction of cerebral blood flow, hippocampal damage, white matter lesions, neuronal cell death, cholinergic dysfunction, excitotoxicity, calcium overload, cytotoxic oedema, a decline in adenosine triphosphate (ATP), malfunctioning of Na+/K+-ATPase, and the blood-brain barrier breakdown. Altogether, the information provided can be used to guide therapeutic strategies for cerebral ischemia.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Circulação Cerebrovascular/fisiologia , Doenças do Sistema Nervoso/patologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos
7.
Curr Drug Deliv ; 16(8): 698-711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456519

RESUMO

Many drugs have been designed to treat diseases of the central nervous system (CNS), especially neurodegenerative diseases. However, the presence of tight junctions at the blood-brain barrier has often compromised the efficiency of drug delivery to target sites in the brain. The principles of drug delivery systems across the blood-brain barrier are dependent on substrate-specific (i.e. protein transport and transcytosis) and non-specific (i.e. transcellular and paracellular) transport pathways, which are crucial factors in attempts to design efficient drug delivery strategies. This review describes how the blood-brain barrier presents the main challenge in delivering drugs to treat brain diseases and discusses the advantages and disadvantages of ongoing neurotherapeutic delivery strategies in overcoming this limitation. In addition, we discuss the application of colloidal carrier systems, particularly nanoparticles, as potential tools for therapy for the CNS diseases.


Assuntos
Barreira Hematoencefálica/química , Barreira Hematoencefálica/efeitos dos fármacos , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Fármacos Neuroprotetores/farmacologia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Coloides/química , Humanos , Fármacos Neuroprotetores/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-29348770

RESUMO

Glutamate is the primary excitatory neurotransmitter in the central nervous system. Excessive concentrations of glutamate in the brain can be excitotoxic and cause oxidative stress, which is associated with Alzheimer's disease. In the present study, the effects of vitamin E in the form of tocotrienol-rich fraction (TRF) and alpha-tocopherol (α-TCP) in modulating the glutamate receptor and neuron injury markers in an in vitro model of oxidative stress in neural-derived embryonic stem (ES) cell cultures were elucidated. A transgenic mouse ES cell line (46C) was differentiated into a neural lineage in vitro via induction with retinoic acid. These cells were then subjected to oxidative stress with a significantly high concentration of glutamate. Measurement of reactive oxygen species (ROS) was performed after inducing glutamate excitotoxicity, and recovery from this toxicity in response to vitamin E was determined. The gene expression levels of glutamate receptors and neuron-specific enolase were elucidated using real-time PCR. The results reveal that neural cells derived from 46C cells and subjected to oxidative stress exhibit downregulation of NMDA, kainate receptor, and NSE after posttreatment with different concentrations of TRF and α-TCP, a sign of neurorecovery. Treatment of either TRF or α-TCP reduced the levels of ROS in neural cells subjected to glutamate-induced oxidative stress; these results indicated that vitamin E is a potent antioxidant.

9.
J Microencapsul ; 33(2): 114-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982435

RESUMO

Alzheimer disease involves genetic and non-genetic factors and hence it is rational to be treated with genetic and non-genetic therapeutic agents. Nigella sativa has multiple therapeutic properties including neuroregeneration. Nigella sativa oil (NSO) was encapsulated in PLGA nanoparticles and pDNA was loaded either by adsorption on chitosan-modified particles or encapsulation within PLGA nanoparticles. The particle size and zeta potential of NSO-pDNA-chitosan-PLGA nanoparticles were highly dependent on the medium and exhibited high burst release. Meanwhile, NSO-pDNA-PLGA nanoparticles were more consistent with lower burst release. The fabricated nanoparticles revealed the expected outcomes of both pDNA and NSO. The pDNA transfected N2a cell while the encapsulated NSO promoted neurite outgrowth that is crucial for neuroregeneration. Results from this study suggest that NSO could be added to the gene delivery carrier to enhance treatment benefits for Alzheimer disease.


Assuntos
Doença de Alzheimer/terapia , DNA/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Óleos de Plantas/administração & dosagem , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Animais , Linhagem Celular , DNA/uso terapêutico , Terapia Genética , Humanos , Ácido Láctico/química , Camundongos , Nanopartículas/ultraestrutura , Neurogênese/efeitos dos fármacos , Óleos de Plantas/uso terapêutico , Plasmídeos/administração & dosagem , Plasmídeos/uso terapêutico , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transfecção/métodos
10.
J Microencapsul ; 31(6): 600-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24697178

RESUMO

The aim of this study is to investigate the cell uptake of Nigella sativa oil (NSO)-PLGA microparticle by neuron-like PC-12 cells in comparison to surfactants; hydrophilic (Tween 80 & Triton X100) and hydrophobic (Span 80). Solvent evaporation was used to precisely control the size, zeta potential and morphology of the particle. The results revealed varying efficiencies of the cell uptake by PC-12 cells, which may be partially attributed to the surface hydrophobicity of the microparticles. Interestingly, the uptake efficiency of PC-12 cells was higher with the more hydrophilic microparticle. NSO microparticle showed evidence of being preferably internalised by mitotic cells. Tween 80 microparticle showed the highest cell uptake efficiency with a concentration-dependent pattern suggesting its use as uptake enhancer for non-scavenging cells. In conclusion, PC-12 cells can take up NSO-PLGA microparticle which may have potential in the treatment of neurodegenerative disease.


Assuntos
Ácido Láctico , Doenças Neurodegenerativas/tratamento farmacológico , Óleos de Plantas , Ácido Poliglicólico , Animais , Hexoses/química , Hexoses/farmacocinética , Hexoses/farmacologia , Octoxinol/química , Octoxinol/farmacocinética , Octoxinol/farmacologia , Células PC12 , Óleos de Plantas/química , Óleos de Plantas/farmacocinética , Óleos de Plantas/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polissorbatos/química , Polissorbatos/farmacocinética , Polissorbatos/farmacologia , Ratos , Tensoativos/química , Tensoativos/farmacocinética , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...