Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 187: 504-512, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856036

RESUMO

The photo-degradation of the emerging contaminant antipyrine (AP) was studied and optimized in a novel photocatalytic spinning disc reactor (SDR). A heterogeneous process (UV/H2O2/TiO2) was used. TiO2 was immobilized on the surface of a glass disc using a sol-gel method. A factorial design of experiments followed by a Neural Networks fitting allowed the optimal conditions to be determined for treating 50 mg/L of AP. Under these conditions (pH = 4; [H2O2]0 = 1500 mg/L; disc speed = 500 rpm; flowrate = 25 mL/s), AP was completely degraded in 120 min and regeneration of the disc allowed 10 cycles with no loss in efficiency. The value of the apparent volumetric rate constant was found to be 6.9·10-4 s-1 with no apparent mass transfer limitation. Based on the main intermediates identified, a mechanism is proposed for antipyrine photodegradation: Firstly, cleavage of the NN bond of penta-heterocycle leads to the formation of two aromatic acids and N-phenylpropanamide. An attack to the CN bond in the latter compound produces benzenamine. Finally, the phenyl ring of the aromatic intermediates are opened and molecular organic acids are formed.


Assuntos
Antipirina/química , Titânio/química , Poluentes Químicos da Água/química , Purificação da Água , Catálise , Humanos , Fotólise , Raios Ultravioleta , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA