Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 57(4): 1284-1294, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33817802

RESUMO

We reported the significant effect of auxin and gibberellin on mixoploid cultures created by colchicine in Dunaliella salina. Polyploidy induction increased growth and the amount of all biochemical parameters measured in this work including chlorophyll, carotenoid, starch, glycerol, sugar, and protein. Treatment with colchicine 0.1%, which resulted in 58.26% of polyploid cells, had a better effect on increasing the amount of analyzed parameters. Auxin increased the amount of all measured parameters except protein. Low concentrations of auxin (1 and 10 µM) caused an increase in growth and the amount of chlorophyll, carotenoid, sugar, starch, glycerol, and protein in the cells treated with colchicine. Gibberellin significantly increased the amount of the mentioned parameters in a concentration-dependent manner. In cultures treated with colchicine, additive effects of gibberellin were observed in glycerol, protein, starch, and sugar content. Our results showed that the use of phytohormones such as auxin and gibberellin can be a good way to increase the biochemical value of algal polyploid cell biomass.


Assuntos
Clorofíceas , Giberelinas , Colchicina , Ácidos Indolacéticos , Poliploidia
2.
Appl Biochem Biotechnol ; 175(5): 2366-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25492688

RESUMO

This study is aimed at testing the efficiency of colchicine on inducing polyploidy in Cannabis sativa L. and investigation of effects of polyploidy induction on some primary and secondary metabolites. Shoot tips were treated with three different concentrations of colchicine (0, 0.1, 0.2 % w/v) for 24 or 48 h. The biggest proportion of the almost coplanar tetraploids (43.33 %) and mixoploids (13.33 %) was obtained from the 24-h treatment in 0.2 and 0.1 % w/v, respectively. Colchicine with 0.2 % concentration and 48 h duration was more destructive than 24 h. The ploidy levels were screened with flow cytometry. The biochemical analyses showed that reducing sugars, soluble sugars, total protein, and total flavonoids increased significantly in mixoploid plants compared with tetraploid and diploid plants. Tetraploid plants had a higher amount of total proteins, total flavonoids, and starch in comparison with control plants. The results showed that polyploidization could increase the contents of tetrahydrocannabinol in mixoploid plants only, but tetraploid plants had lower amounts of this substance in comparison with diploids. Also, we found such changes in protein concentration in electrophoresis analysis. In overall, our study suggests that tetraploidization could not be useful to produce tetrahydrocannabinol for commercial use, and in this case, mixoploids are more suitable.


Assuntos
Cannabis/química , Cannabis/genética , Poliploidia , Cannabis/efeitos dos fármacos , Cannabis/metabolismo , Metabolismo dos Carboidratos , Carboidratos/análise , Colchicina/farmacologia , Flavonoides/análise , Flavonoides/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo
3.
Physiol Mol Biol Plants ; 20(2): 273-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24757332

RESUMO

Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP) pathway. In this study, we investigated the inhibitory effect of the MVA pathway on isoprenoid biosynthesized by the MEP pathway in Cannabis sativa by treatment with mevinolin. The amount of chlorophyll a, b, and total showed to be significantly enhanced in treated plants in comparison with control plants. Also, mevinolin induced the accumulation of carotenoids and α-tocopherol in treated plants. Mevinolin caused a significant decrease in tetrahydrocannabinol (THC) content. This result show that the inhibition of the MVA pathway stimulates MEP pathway but none for all metabolites.

4.
J Integr Plant Biol ; 51(6): 553-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19522814

RESUMO

Plants synthesize an astonishing diversity of isoprenoids, some of which play essential roles in photosynthesis, respiration, and the regulation of growth and development. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP) pathway. However, little is known about the effects of plant hormones on the regulation of these pathways. In the present study we investigated the effect of gibberellic acid (GA(3)) on changes in the amounts of many produced terpenoids and the activity of the key enzymes, 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), in these pathways. Our results showed GA(3) caused a decrease in DXS activity in both sexes that it was accompanied by a decrease in chlorophylls, carotenoids and Delta(9)-tetrahydrocannabinol (THC) contents and an increase in alpha-tocopherol content. The treated plants with GA(3) showed an increase in HMGR activity. This increase in HMGR activity was followed by accumulation of stigmasterol and beta-sitosterol in male and female plants and campestrol in male plants. The pattern of the changes in the amounts of sterols was exactly similar to the changes in the HMGR activity. These data suggest that GA(3) can probably influence the MEP and MVA pathways oppositely, with stimulatory and inhibitory effects on the produced primary terpenoids in MVA and DXS pathways, respectively.


Assuntos
Cannabis/efeitos dos fármacos , Cannabis/metabolismo , Dronabinol/metabolismo , Flores/efeitos dos fármacos , Flores/metabolismo , Giberelinas/farmacologia , Terpenos/metabolismo , Cannabis/enzimologia , Cannabis/crescimento & desenvolvimento , Carotenoides/metabolismo , Clorofila/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Fitosteróis/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Transferases/metabolismo , alfa-Tocoferol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...