Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 12(3): 210288, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35291880

RESUMO

The antibody-dependent respiratory burst (ADRB) assay is a sensitive isoluminol-based chemiluminescence (CL) functional assay designed to assess the capacity of opsonizing antibodies against merozoites to induce neutrophil respiratory burst. ADRB was shown to measure protective immunity against malaria in endemic areas, but the assay needed further improvement to ensure better sensitivity and reproducibility. Here, we adjusted parameters such as the freezing-thawing procedure of merozoites, merozoites's concentration and the buffer solution's pH, and we used the improved assay to measure ADRB activity of 207 sera from 97 and 110 individuals living, respectively, in Dielmo and Ndiop villages with differing malaria endemicity. The improvement led to increased CL intensity and assay sensitivity, and a higher reproducibility. In both areas, ADRB activity correlated with malaria endemicity and individual's age discriminated groups with and without clinical malaria episodes, and significantly correlated with in vivo clinical protection from Plasmodium falciparum malaria. Our results demonstrate that the improved ADRB assay can be valuably used to assess acquired immunity during monitoring by control programmes and/or clinical trials.


Assuntos
Malária , Explosão Respiratória , Animais , Anticorpos Antiprotozoários , Humanos , Imunidade , Malária/prevenção & controle , Merozoítos , Plasmodium falciparum , Reprodutibilidade dos Testes
2.
Malar J ; 14: 409, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26471813

RESUMO

BACKGROUND: Identification of plasmodial antigens targeted by protective immune mechanisms is important for malaria vaccine development. Among functional assays, the neutrophil antibody-dependent respiratory burst (ADRB) induced by opsonized Plasmodium falciparum merozoites has been correlated with acquired immunity to clinical malaria in endemic areas, but the target merozoite antigens are unknown. Here, the contribution of antibodies to the conserved C-terminal domain of the P. falciparum merozoite surface protein-1 (PfMSP1p19) in mediating ADRB was investigated in sera from individuals living in two Senegalese villages with differing malaria endemicity. METHODS: Anti-PfMSP1p19 antibody levels in sera from 233 villagers were investigated and the involvement of anti-PfMSP1p19 antibodies in ADRB was explored in a subset of samples using (1) isogenic P. falciparum parasite clones expressing P. falciparum or Plasmodium chabaudi MSP1p19; (2) PfMSP1p19-coated plaque ADRB; and, (3) ADRB triggering using sera depleted from PfMSP1p19 antibodies by absorption onto the baculovirus recombinant antigen. RESULTS: ADRB activity correlated with anti-PfMSP1p19 IgG levels (P < 10(-3)). A substantial contribution of PfMSP1p19 antibody responses to ADRB was confirmed (P < 10(-4)) in an age-adjusted linear regression model. PfMSP1p19 antibodies accounted for 33.1 % (range 7-54 %) and 33.2 % (range 0-70 %) of ADRB activity evaluated using isogenic merozoites (P < 10(-3)) and depleted sera (P = 0.0017), respectively. Coating of PfMSP1p19 on plates induced strong ADRB in anti-PfMSP1p19-positive sera. CONCLUSION: These data show that naturally acquired P. falciparum MSP1p19 antibodies are potent inducers of neutrophil ADRB and support the development of PfMSP1p19-based malaria vaccine using ADRB assay as a functional surrogate for protection.


Assuntos
Anticorpos Antiprotozoários/imunologia , Proteína 1 de Superfície de Merozoito/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Plasmodium chabaudi/imunologia , Plasmodium falciparum/imunologia , Explosão Respiratória , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Senegal , Adulto Jovem
3.
Malar J ; 14: 281, 2015 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-26186936

RESUMO

BACKGROUND: Control efforts towards malaria due to Plasmodium falciparum significantly decreased the incidence of the disease in many endemic countries including Senegal. Surprisingly, in Kedougou (southeastern Senegal) P. falciparum malaria remains highly prevalent and the relative contribution of other Plasmodium species to the global malaria burden is very poorly documented, partly due to the low sensitivity of routine diagnostic tools. Molecular methods offer better estimate of circulating Plasmodium species in a given area. A molecular survey was carried out to document circulating malaria parasites in Kedougou region. METHODS: A total of 263 long-term stored sera obtained from patients presenting with acute febrile illness in Kedougou between July 2009 and July 2013 were used for malaria parasite determination. Sera were withdrawn from a collection established as part of a surveillance programme of arboviruses infections in the region. Plasmodium species were characterized by a nested PCR-based approach targeting the 18S small sub-unit ribosomal RNA genes of Plasmodium spp. RESULTS: Of the 263 sera screened in this study, Plasmodium genomic DNA was amplifiable by nested PCR from 62.35% (164/263) of samples. P. falciparum accounted for the majority of infections either as single in 85.97% (141/164) of Plasmodium-positive samples or mixed with Plasmodium ovale (11.58%, 19/164) or Plasmodium vivax (1.21%, 2/164). All 19 (11.58%) P. ovale-infected patients were mixed with P. falciparum, while no Plasmodium malariae was detected in this survey. Four patients (2.43%) were found to be infected by P. vivax, two of whom were mixed with P. falciparum. P. vivax infections originated from Bandafassi and Ninefesha villages and concerned patients aged 4, 9, 10, and 15 years old, respectively. DNA sequences alignment and phylogenetic analysis demonstrated that sequences from Kedougou corresponded to P. vivax, therefore confirming the presence of P. vivax infections in Senegal. CONCLUSION: The results confirm the high prevalence of P. falciparum in Kedougou and provide the first molecular evidence of P. vivax infections in Senegal. These findings pave the ways for further investigations of P. vivax infections in Senegal and its contribution to the global burden of malaria disease before targeted strategies can be deployed.


Assuntos
Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium vivax/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , DNA de Protozoário/sangue , DNA de Protozoário/genética , Feminino , Humanos , Lactente , Malária/epidemiologia , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium/genética , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Senegal/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...