RESUMO
Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M=Cd, Pb, Zn, X=S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.
Assuntos
Bioengenharia/métodos , Carboximetilcelulose Sódica/química , Corantes Fluorescentes/química , Imageamento Tridimensional , Sondas Moleculares/química , Nanoconjugados/química , Pontos Quânticos/química , Semicondutores , Sobrevivência Celular , Células HEK293 , Humanos , Nanoconjugados/ultraestrutura , Espectroscopia Fotoeletrônica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios XRESUMO
Quantum dots (QDs) are colloidal semiconductor nanocrystals with unique properties that can be engineered by controlling the nanoparticle size and chemical composition by doping and alloying strategies. However, due to their potential toxicity, augmenting their biocompatibility is yet a challenge for expanding to several biomedical and environmentally friendly applications. Thus, the main goal of this study was to develop composition-tunable and biocompatible Zn x Cd1 - x S QDs using carboxymethylcellulose polysaccharide as direct capping ligand via green colloidal aqueous route at neutral pH and at room temperature for potential biomedical and environmental applications. The ternary alloyed QDs were extensively characterized using UV-vis spectroscopy, photoluminescence spectroscopy (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), and X-ray photoelectrons spectroscopy (XPS). The results indicated that Zn x Cd(1 - x)S QDs were surface stabilized by carboxymethylcellulose biopolymer with spherical morphology for all composition of alloys and narrow sizes distributions ranging from 4 to 5 nm. The XRD results indicated that monophasic ternary alloyed Zn x Cd1 - x S nanocrystals were produced with homogenous composition of the core as evidenced by EELS and XPS analyses. In addition, the absorption and emission optical properties of Zn x Cd1 - x S QDs were red shifted with increasing the amount of Cd2+ in the alloyed nanocrystals, which have also increased the quantum yield compared to pure CdS and ZnS nanoparticles. These properties of alloyed nanomaterials were interpreted based on empirical model of Vegard's law and chemical bond model (CBM). As a proof of concept, these alloyed-QD conjugates were tested for biomedical and environmental applications. The results demonstrated that they were non-toxic and effective fluorophores for bioimaging live HEK293T cells (human embryonic kidney cells) using confocal laser scanning fluorescence microscopy. Moreover, these conjugates presented photocatalytic activity for photodegradation of methylene blue used as model organic industrial pollutant in water. Hence, composition-tunable optical properties of ternary Zn x Cd1 - x S (x = 0-1) fluorescent alloyed QDs was achieved using a facile eco-friendly aqueous processing route, which can offer promising alternatives for developing innovative nanomaterials for applications in nanomedicine and environmental science and technology.
RESUMO
In this study, it is reported the use of sodium carboxymethyl cellulose (CMCel) as a multifunctional biocompatible polysaccharide for the direct synthesis of fluorescent alloyed-ZnCdS quantum dot (QD) nanoconjugates via aqueous "green" process at room temperature. The nanoconjugates were extensively characterized by spectroscopical (NMR, FTIR, UV-vis, PL) and morphological techniques (DLS, TEM) for accessing their structural and physicochemical properties associated with X-ray photoelectron spectroscopy (XPS) for surface and interface analysis. The results proved the hypothesis of formation of core-shell nanostructures composed by the semiconductor ZnCdS QD core and the organic biocompatible ligand CMCel shell. Moreover, CMCel chemical functional groups played a pivotal role for controlling the size of water-soluble colloidal nanocrystals (2r=4-5nm) and hydrodynamic diameters (<15nm) evidenced by metal complexation and interactions at the nanointerfaces. Additionally, these nanoconjugates were cytocompatible and luminescent for bioimaging human osteosarcoma cancer cells. Thus, these novel polysaccharide-based fluorescent bioconjugates offer promising perspectives as nanoplatforms for cancer cell bioimaging and diagnosis purposes.