Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(4): 193, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526562

RESUMO

Cellular homeostasis is regulated by growth factors (GFs) which orchestrate various cellular processes including proliferation, survival, differentiation, motility, inflammation and angiogenesis. Dysregulation of GFs in microbial infections and malignancies have been reported previously. Viral pathogens exemplify the exploitation of host cell GFs and their signalling pathways contributing to viral entry, virulence, and evasion of anti-viral immune responses. Viruses can also perturb cellular metabolism and the cell cycle by manipulation of GF signaling. In some cases, this disturbance may promote oncogenesis. Viral pathogens can encode viral GF homologues and induce the endogenous biosynthesis of GFs and their corresponding receptors or manipulate their activity to infect the host cells. Close investigation of how viral strategies exploit and regulate GFs, a will shed light on how to improve anti-viral therapy and cancer treatment. In this review, we discuss and provide insights on how various viral pathogens exploit different GFs to promote viral survival and oncogenic transformation, and how this knowledge can be leveraged toward the design of more efficient therapeutics or novel drug delivery systems in the treatment of both viral infections and malignancies.


Assuntos
Carcinogênese , Vírus , Humanos , Virulência , Peptídeos e Proteínas de Sinalização Intercelular , Ciclo Celular , Vírus/genética
2.
Brain Behav Immun ; 116: 140-149, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070619

RESUMO

Cancers of the central nervous system (CNS) are unique with respect to their tumor microenvironment. Such a status is due to immune-privilege and the cellular behaviors within a highly networked, neural-rich milieu. During tumor development in the CNS, neural, immune and cancer cells establish complex cell-to-cell communication networks which mimic physiological functions, including paracrine signaling and synapse-like formations. This crosstalk regulates diverse pathological functions contributing to tumor progression. In the CNS, regulation of physiological and pathological functions relies on various cell signaling and transcription programs. At the core of these events lies the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a master transcriptional regulator in the CNS. CREB is a kinase inducible transcription factor which regulates many CNS functions, including neurogenesis, neuronal survival, neuronal activation and long-term memory. Here, we discuss how CREB-regulated mechanisms operating in diverse cell types, which control development and function of the CNS, are co-opted in CNS tumors.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Neoplasias , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transdução de Sinais/fisiologia , Sistema Nervoso Central/metabolismo , Imunidade , Microambiente Tumoral
3.
Cells Dev ; 177: 203882, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37956740

RESUMO

Phosphorylated histone H2AX (γH2AX) represents a sensitive molecular marker of DNA double-strand breaks (DSBs) and is implicated in stem cell biology. We established a model of mouse embryonic stem cell (mESC) differentiation and examined the dynamics of γH2AX foci during the process. Our results revealed high numbers of γH2AX foci in undifferentiated mESCs, decreasing as the cells differentiated towards the endothelial cell lineage. Notably, we observed two distinct patterns of γH2AX foci: the typical discrete γH2AX foci, which colocalize with the transcriptionally permissive chromatin mark H3K4me3, and the less well-characterized clustered γH2AX regions, which were only observed in intermediate progenitor cells. Next, we explored responses of mESCs to γ-radiation (137Cs). Following exposure to γ-radiation, mESCs showed a reduction in cell viability and increased γH2AX foci, indicative of radiosensitivity. Despite irradiation, surviving mESCs retained their differentiation potential. To further exemplify our findings, we investigated neural stem progenitor cells (NSPCs). Similar to mESCs, NSPCs displayed clustered γH2AX foci associated with progenitor cells and discrete γH2AX foci indicative of embryonic stem cells or differentiated cells. In conclusion, our findings demonstrate that γH2AX serves as a versatile marker of DSBs and may have a role as a biomarker in stem cell differentiation. The distinct patterns of γH2AX foci in differentiating mESCs and NSPCs provide valuable insights into DNA repair dynamics during differentiation, shedding light on the intricate balance between genomic integrity and cellular plasticity in stem cells. Finally, the clustered γH2AX foci observed in intermediate progenitor cells is an intriguing feature, requiring further exploration.


Assuntos
Reparo do DNA , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Reparo do DNA/genética , Quebras de DNA de Cadeia Dupla , Células-Tronco Embrionárias , Diferenciação Celular/genética
4.
Methods Mol Biol ; 2746: 57-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070079

RESUMO

The invasive capacity and progression of glioblastoma cells and neoplastic cells in other are dependent on interactions with the surrounding tumor microenvironment. In particular, cancer cells form a reciprocal relationship with noncellular dysregulated extracellular matrix in the tumors. Here, we describe a protocol that can be used to model the functional relationship between tumor cells and extracellular matrix. We demonstrate how 3D organoids, including glioma tumor organoids, can be processed, embedded, and sectioned in a high-throughput setup that enables investigation of the organoids by histopathological methods, multiplex immunohistochemistry, and spatial analysis within the same section.


Assuntos
Glioblastoma , Humanos , Imuno-Histoquímica , Glioblastoma/patologia , Organoides/patologia , Microambiente Tumoral
5.
PLoS Genet ; 19(11): e1011010, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37930995

RESUMO

Damage to light-sensing photoreceptors (PRs) occurs in highly prevalent retinal diseases. As humans cannot regenerate new PRs, these diseases often lead to irreversible blindness. Intriguingly, animals, such as the zebrafish, can regenerate PRs efficiently and restore functional vision. Upon injury, mature Müller glia (MG) undergo reprogramming to adopt a stem cell-like state. This process is similar to cellular dedifferentiation, and results in the generation of progenitor cells, which, in turn, proliferate and differentiate to replace lost retinal neurons. In this study, we tested whether factors involved in dedifferentiation of Drosophila CNS are implicated in the regenerative response in the zebrafish retina. We found that hairy-related 6 (her6) negatively regulates of PR production by regulating the rate of cell divisions in the MG-derived progenitors. prospero homeobox 1a (prox1a) is expressed in differentiated PRs and may promote PR differentiation through phase separation. Interestingly, upon Her6 downregulation, Prox1a is precociously upregulated in the PRs, to promote PR differentiation; conversely, loss of Prox1a also induces a downregulation of Her6. Together, we identified two novel candidates of PR regeneration that cross regulate each other; these may be exploited to promote human retinal regeneration and vision recovery.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Homeodomínio , Retina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Regeneração Nervosa/fisiologia , Neuroglia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Homeodomínio/genética
6.
Exp Cell Res ; 431(1): 113743, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591452

RESUMO

A critical challenge in the treatment of glioblastoma (GBM) is its highly invasive nature which promotes cell migration throughout the brain and hinders surgical resection and effective drug delivery. GBM cells demonstrate augmented invasive capabilities following exposure to the current gold standard treatment of radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ), resulting in rapid disease recurrence. Elucidating the mechanisms employed by post-treatment invasive GBM cells is critical to the development of more effective therapies. In this study, we utilized a Nanostring® Cancer Progression gene expression panel to identify candidate genes that may be involved in enhanced GBM cell invasion after treatment with clinically relevant doses of RT/TMZ. Our findings identified thrombospondin-1 (THBS1) as a pro-invasive gene that is upregulated in these cells. Immunofluorescence staining revealed that THBS1 localised within functional matrix-degrading invadopodia that formed on the surface of GBM cells. Furthermore, overexpression of THBS1 resulted in enhanced GBM cell migration and secretion of MMP-2, which was reduced with silencing of THBS1. The preliminary data demonstrates that THBS1 is associated with invadopodia in GBM cells and is likely involved in the invadopodia-mediated invasive process in GBM cells exposed to RT/TMZ treatment. Therapeutic inhibition of THBS1-mediated invadopodia activity, which facilitates GBM cell invasion, should be further investigated as a treatment for GBM.


Assuntos
Glioblastoma , Podossomos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Recidiva Local de Neoplasia , Temozolomida/farmacologia , Encéfalo
7.
Cell Oncol (Dordr) ; 46(4): 909-931, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37014551

RESUMO

PURPOSE: The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS: Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS: We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS: Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.


Assuntos
Vesículas Extracelulares , Glioblastoma , Podossomos , Humanos , Glioblastoma/patologia , Temozolomida/farmacologia , Podossomos/metabolismo , Podossomos/patologia , Proteômica
8.
BMC Cancer ; 23(1): 216, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882706

RESUMO

BACKGROUND: A subset of meningiomas progress in histopathological grade but drivers of progression are poorly understood. We aimed to identify somatic mutations and copy number alterations (CNAs) associated with grade progression in a unique matched tumour dataset. METHODS: Utilising a prospective database, we identified 10 patients with meningiomas that had undergone grade progression and for whom matched pre- and post-progression tissue (n = 50 samples) was available for targeted next-generation sequencing. RESULTS: Mutations in NF2 were identified in 4/10 patients, of these 94% were non-skull base tumours. In one patient, three different NF2 mutations were identified in four tumours. NF2 mutated tumours showed large-scale CNAs, with highly recurrent losses in 1p, 10, 22q, and frequent CNAs on chromosomes 2, 3 and 4. There was a correlation between grade and CNAs in two patients. Two patients with tumours without detected NF2 mutations showed a combination of loss and high gain on chromosome 17q. Mutations in SETD2, TP53, TERT promoter and NF2 were not uniform across recurrent tumours, however did not correspond with the onset of grade progression. CONCLUSION: Meningiomas that progress in grade generally have a mutational profile already detectable in the pre-progressed tumour, suggesting an aggressive phenotype. CNA profiling shows frequent alterations in NF2 mutated tumours compared to non NF2 mutated tumours. The pattern of CNAs may be associated with grade progression in a subset of cases.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Bases de Dados Factuais , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias Meníngeas/genética
9.
Cell Oncol (Dordr) ; 46(3): 589-602, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36567397

RESUMO

PURPOSE: Tumor cells thrive by adapting to the signals in their microenvironment. To adapt, cancer cells activate signaling and transcriptional programs and migrate to establish micro-niches, in response to signals from neighboring cells and non-cellular stromal factors. Understanding how the tumor microenvironment evolves during disease progression is crucial to deciphering the mechanisms underlying the functional behavior of cancer cells. METHODS: Multiplex immunohistochemistry, spatial analysis and histological dyes were used to identify and measure immune cell infiltration, cell signal activation and extracellular matrix deposition in low-grade, high-grade astrocytoma and glioblastoma. RESULTS: We show that lower grade astrocytoma tissue is largely devoid of infiltrating immune cells and extracellular matrix proteins, while high-grade astrocytoma exhibits abundant immune cell infiltration, activation, and extensive tissue remodeling. Spatial analysis shows that most T-cells are restricted to perivascular regions, but bone marrow-derived macrophages penetrate deep into neoplastic cell-rich regions. The tumor microenvironment is characterized by heterogeneous PI3K, MAPK and CREB signaling, with specific signaling profiles correlating with distinct pathological hallmarks, including angiogenesis, tumor cell density and regions where neoplastic cells border the extracellular matrix. Our results also show that tissue remodeling is important in regulating the architecture of the tumor microenvironment during tumor progression. CONCLUSION: The tumor microenvironment in malignant astrocytoma, exhibits changes in cell composition, cell signaling activation and extracellular matrix deposition during disease development and that targeting the extracellular matrix, as well as cell signaling activation will be critical to designing personalized therapy.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Microambiente Tumoral , Glioma/metabolismo , Astrocitoma/metabolismo , Transdução de Sinais , Matriz Extracelular/metabolismo , Neoplasias Encefálicas/patologia
10.
Mol Cell Biochem ; 478(6): 1251-1267, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36302993

RESUMO

Glioblastoma (GBM) is the most prevalent primary central nervous system tumour in adults. The lethality of GBM lies in its highly invasive, infiltrative, and neurologically destructive nature resulting in treatment failure, tumour recurrence and death. Even with current standard of care treatment with surgery, radiotherapy and chemotherapy, surviving tumour cells invade throughout the brain. We have previously shown that this invasive phenotype is facilitated by actin-rich, membrane-based structures known as invadopodia. The formation and matrix degrading activity of invadopodia is enhanced in GBM cells that survive treatment. Drug repurposing provides a means of identifying new therapeutic applications for existing drugs without the need for discovery or development and the associated time for clinical implementation. We investigate several FDA-approved agents for their ability to act as both cytotoxic agents in reducing cell viability and as 'anti-invadopodia' agents in GBM cell lines. Based on their cytotoxicity profile, three agents were selected, bortezomib, everolimus and fludarabine, to test their effect on GBM cell invasion. All three drugs reduced radiation/temozolomide-induced invadopodia activity, in addition to reducing GBM cell viability. These drugs demonstrate efficacious properties warranting further investigation with the potential to be implemented as part of the treatment regime for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Reposicionamento de Medicamentos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Temozolomida/farmacologia
11.
Front Oncol ; 12: 873722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505819

RESUMO

Brain tumours are the most common solid tumour in children and the leading cause of cancer related death in children. Current treatments include surgery, chemotherapy and radiotherapy. The need for aggressive treatment means many survivors are left with permanent severe disability, physical, intellectual and social. Recent progress in immunotherapy, including genetically engineered T cells with chimeric antigen receptors (CARs) for treating cancer, may provide new avenues to improved outcomes for patients with paediatric brain cancer. In this review we discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that are in clinical and pre-clinical development with a focus on paediatric brain tumours, the paediatric brain tumour microenvironment and strategies used to improve CAR T cell therapy for paediatric tumours.

12.
Methods Cell Biol ; 170: 21-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811101

RESUMO

Cancer stem cells are defined as low-abundance, quiescent cells and are considered a major cellular source of tumor recurrence following therapy, which identifies these cells as important therapeutic targets for difficult-to-treat cancers, including high-grade gliomas. By contrast to the highly proliferative bulk tumor cells, glioma stem cells (GSC) are slow-cycling, and therefore less sensitive to DNA damaging cytotoxic drugs. GSC are also less reliant on aerobic glycolytic metabolism, leading to inadequate clearing of GSC by chemotherapy and radiotherapy. The definition of GSC is based on the expression of specific stem cell protein markers. This method of GSC isolation is successful in isolating cell populations that can reliably recapitulate the tumor. However, cell populations that lack stem marker expression may also be capable of tumor recapitulation. Therefore, robust, reproducible methods for isolating GSC are required to identify and isolate cells with stem cell characteristics. Here, we provide a comprehensive and reproducible protocol for the isolation of slow-cycling GSC. Using this method, GSC isolated retain key characteristics of the cells in situ, including expression of genes associated with cell quiescence and invasive potential, compared to non-quiescent cell populations. Thus, isolation of GSC gated on cell proliferation offers a reliable alternative method for in vitro GSC identification, that adequately mirrors the physiological properties of GSC seen in vivo.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/patologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/patologia
13.
Front Biosci (Landmark Ed) ; 26(9): 628-642, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590472

RESUMO

Despite their differences, central nervous system (CNS) tumors and degenerative diseases share important molecular mechanisms underlying their pathologies, due to their common anatomy. Here we review the role of the renin-angiotensin system (RAS) in CNS tumors and degenerative diseases, to highlight common molecular features and examine the potential merits in repurposing drugs that inhibit the RAS, its bypass loops, and converging signaling pathways. The RAS consists of key components, including angiotensinogen, (pro)renin receptor (PRR), angiotensin-converting enzyme 1 (ACE1), angiotensin-converting enzyme 2 (ACE2), angiotensin I (ATI), angiotensin II (ATII), ATII receptor 1 (AT1R), ATII receptor 2 (AT2R) and the Mas receptor (MasR). The RAS is integral to systemic and cellular pathways that regulate blood pressure and body fluid equilibrium and cellular homeostasis. The main effector of the RAS is ATII which exerts its effect by binding to AT1R and AT2R through two competitive arms: an ACE1/ATII/AT1R axis, which is involved in regulating oxidative stress and neuroinflammation pathways, and an ATII/AT2R and/or ATII/ACE2/Ang(1-7)/MasR axis that potentiates neuroprotection pathways. Alterations of these axes are associated with cellular dysfunction linked to CNS diseases. The generation of ATII is also influenced by proteases that constitute bypass loops of the RAS. These bypass loops include cathepsins B, D and G and chymase and aminopeptidases. The RAS is also influenced by converging pathways such as the Wnt/ß-catenin pathway which sits upstream of the RAS via PRR, a key component of the RAS. We also discuss the co-expression of components of the RAS and markers of pluripotency, such as OCT4 and SOX2, in Parkinson's disease and glioblastoma, and their potential influences on transduction pathways involving the Wnt/ß-catenin, MAPK/ERK, PI3K/AKT and vacuolar (H+) adenosine triphosphatase (V-ATPase) signaling cascades. Further research investigating modulation of the ACE1/ATII/AT1R and ACE2/Ang(1-7)/MasR axes with RAS inhibitors may lead to novel treatment of CNS tumors and degenerative diseases. The aim of this review article is to discuss and highlight experimental and epidemiological evidence for the role of the RAS, its bypass loops and convergent signaling pathways in the pathogenesis of CNS tumors and degenerative diseases, to direct research that may lead to the development of novel therapy.


Assuntos
Neoplasias do Sistema Nervoso Central , Doenças Neuroinflamatórias , Sistema Renina-Angiotensina , Humanos , Transdução de Sinais
14.
Br J Cancer ; 125(11): 1466-1476, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34349251

RESUMO

The prognosis for patients with glioblastoma (GBM), the most common and malignant type of primary brain tumour, is very poor, despite current standard treatments such as surgery, radiotherapy and chemotherapy. Moreover, the immunosuppressive tumour microenvironment hinders the development of effective immunotherapies for GBM. Cytokines such as interleukin-10 (IL-10) play a major role in modulating the activity of infiltrating immune cells and tumour cells in GBM, predominantly conferring an immunosuppressive action; however, in some circumstances, IL-10 can have an immunostimulatory effect. Elucidating the function of IL-10 in GBM is necessary to better strategise and improve the efficacy of immunotherapy. This review discusses the immunostimulatory and immunosuppressive roles of IL-10 in the GBM tumour microenvironment while considering IL-10-targeted treatment strategies. The molecular mechanisms that underlie the expression of IL-10 in various cell types are also outlined, and how this resulting information might provide an avenue for the improvement of immunotherapy in GBM is explored.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Interleucina-10/metabolismo , Progressão da Doença , Humanos , Prognóstico
15.
Cancers (Basel) ; 13(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34439159

RESUMO

Glioblastoma (GB) is an aggressive primary brain tumor. Despite intensive research over the past 50 years, little advance has been made to improve the poor outcome, with an overall median survival of 14.6 months following standard treatment. Local recurrence is inevitable due to the quiescent cancer stem cells (CSCs) in GB that co-express stemness-associated markers and components of the renin-angiotensin system (RAS). The dynamic and heterogeneous tumor microenvironment (TME) plays a fundamental role in tumor development, progression, invasiveness, and therapy resistance. There is increasing evidence showing the critical role of the RAS in the TME influencing CSCs via its upstream and downstream pathways. Drugs that alter the hallmarks of cancer by modulating the RAS present a potential new therapeutic alternative or adjunct to conventional treatment of GB. Cerebral and GB organoids may offer a cost-effective method for evaluating the efficacy of RAS-modulating drugs on GB. We review the nexus between the GB TME, CSC niche, and the RAS, and propose re-purposed RAS-modulating drugs as a potential therapeutic alternative or adjunct to current standard therapy for GB.

16.
Cancer Immunol Immunother ; 70(7): 1811-1820, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33389014

RESUMO

Recent developments in cancer immunotherapy promise better outcomes for cancer patients, although clinical trials for difficult to treat cancers such as malignant brain cancer present special challenges, showing little response to first generation immunotherapies. Reasons for differences in immunotherapy response in some cancer types are likely due to the nature of tumor microenvironment, which harbors multiple cell types which interact with tumor cells to establish immunosuppression. The cell types which appear to hold the key in regulating tumor immunosuppression are the tumor-infiltrating immune cells. The current standard treatment for difficult to treat cancer, including the most malignant brain cancer, glioblastoma, continues to offer a bleak outlook for patients. Immune-profiling and correlation with pathological and clinical data will lead to a deeper understanding of the tumor immune microenvironment and contribute toward the selection, optimization and development of novel precision immunotherapies. Here, we review the current understanding of the tumor microenvironmental landscape in glioblastoma with a focus on next-generation technologies including multiplex immunofluorescence and computational approaches to map the brain tumor microenvironment to decipher the role of the immune system in this lethal malignancy.


Assuntos
Biomarcadores Tumorais/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Simulação por Computador , Tolerância Imunológica/imunologia , Imuno-Histoquímica/métodos , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Humanos , Terapia de Alvo Molecular , Medicina de Precisão
17.
Cancers (Basel) ; 12(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050088

RESUMO

Glioblastoma (GBM) is the most prevalent and malignant type of primary brain cancer. The rapid invasion and dissemination of tumor cells into the surrounding normal brain is a major driver of tumor recurrence, and long-term survival of GBM patients is extremely rare. Actin-rich cell membrane protrusions known as invadopodia can facilitate the highly invasive properties of GBM cells. Ion channels have been proposed to contribute to a pro-invasive phenotype in cancer cells and may also be involved in the invadopodia activity of GBM cells. GBM cell cytotoxicity screening of several ion channel drugs identified three drugs with potent cell killing efficacy: flunarizine dihydrochloride, econazole nitrate, and quinine hydrochloride dihydrate. These drugs demonstrated a reduction in GBM cell invadopodia activity and matrix metalloproteinase-2 (MMP-2) secretion. Importantly, the treatment of GBM cells with these drugs led to a significant reduction in radiation/temozolomide-induced invadopodia activity. The dual cytotoxic and anti-invasive efficacy of these agents merits further research into targeting ion channels to reduce GBM malignancy, with a potential for future clinical translation in combination with the standard therapy.

18.
Front Immunol ; 11: 1549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903717

RESUMO

The brain is considered an immune privileged site due to the high selectivity of the blood-brain barrier which restricts the passage of molecules and cells into the brain parenchyma. Recent studies have highlighted active immunosurveillance mechanisms in the brain. Here we review emerging evidence for the contribution of innate lymphoid cells (ILCs) including natural killer (NK) cells to the immunosurveillance of brain cancers focusing on glioblastoma, one of the most aggressive and most common malignant primary brain tumors diagnosed in adults. Moreover, we discuss how the local tissue microenvironment and unique cellular interactions influence ILC functions in the brain and how these interactions might be successfully harnessed for cancer immunotherapy using insights gained from the studies of autoimmunity, aging, and CNS injury.


Assuntos
Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/metabolismo , Suscetibilidade a Doenças , Imunidade Inata , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Animais , Biomarcadores , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Humanos , Imunofenotipagem , Imunoterapia/métodos , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/metabolismo , Resultado do Tratamento
19.
Crit Rev Clin Lab Sci ; 57(4): 227-252, 2019 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-31865806

RESUMO

Research on the role of extracellular vesicles (EVs) in disease pathogenesis has been rapidly growing over the last two decades. As EVs can mediate intercellular communication, they can ultimately facilitate both normal and pathological processes through the delivery of their bioactive cargo, which may include nucleic acids, proteins and lipids. EVs have emerged as important regulators of brain tumors, capable of transferring oncogenic proteins, receptors, and small RNAs that may support brain tumor progression, including in the most common type of brain cancer, glioma. Investigating the role of EVs in glioma is crucial, as the most malignant glioma, glioblastoma (GBM), is incurable with a dismal median survival of 12-15 months. EV research in GBM has primarily focused on circulating brain tumor-derived vesicles in biofluids, such as blood and cerebrospinal fluid (CSF), investigating their potential as diagnostic and prognostic biomarkers. Gaining a greater understanding of the role of EVs and their cargo in brain tumor progression may contribute to the discovery of novel diagnostics and therapeutics. In this review, we summarize the known and emerging functions of EVs in glioma biology and pathogenesis, as well as their emerging biomarker potential.

20.
Cells ; 8(11)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683669

RESUMO

Patients with glioblastoma (GB), a highly aggressive brain tumor, have a median survival of 14.6 months following neurosurgical resection and adjuvant chemoradiotherapy. Quiescent GB cancer stem cells (CSCs) invariably cause local recurrence. These GB CSCs can be identified by embryonic stem cell markers, express components of the renin-angiotensin system (RAS) and are associated with circulating CSCs. Despite the presence of circulating CSCs, GB patients rarely develop distant metastasis outside the central nervous system. This paper reviews the current literature on GB growth inhibition in relation to CSCs, circulating CSCs, the RAS and the novel therapeutic approach by repurposing drugs that target the RAS to improve overall symptom-free survival and maintain quality of life.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Sistema Renina-Angiotensina , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Neoplasias Encefálicas/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Reposicionamento de Medicamentos , Transição Epitelial-Mesenquimal , Glioblastoma/metabolismo , Humanos , Metástase Neoplásica , Sistema Renina-Angiotensina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...