Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 435(1-2): 163-173, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28526936

RESUMO

Emerging evidence suggests that long non-coding RNAs (lncRNAs) represent a cellular hub coordinating various cellular processes that are critical in health and disease. Mechanical stress triggers changes in vascular smooth muscle cells (VSMCs) that in turn contribute to pathophysiological changes within the vasculature. We sought to evaluate the role that lncRNAs play in mechanical stretch-induced alterations of human aortic smooth muscle cells (HASMCs). RNA (lncRNA and mRNA) samples isolated from HASMCs that had been subjected to 10 or 20% elongation (1 Hz) for 24 h were profiled with the Arraystar Human LncRNA Microarray V3.0. LncRNA expression was quantified in parallel via qRT-PCR. Of the 30,586 human lncRNAs screened, 580 were differentially expressed (DE, P < 0.05) in stretched HASMCs. Amongst the 26,109 protein-coding transcripts evaluated, 25 of those DE were associated with 25 of the aforementioned DE lncRNAs (P < 0.05). Subsequent Kyoto Encyclopedia of Genes and Genomes analysis revealed that the DE mRNAs were largely associated with the tumor necrosis factor signaling pathway and inflammation. Gene Ontology analysis indicated that the DE mRNAs were associated with cell differentiation, stress response, and response to external stimuli. We describe the first transcriptome profile of stretch-induced changes in HASMCs and provide novel insights into the regulatory switches that may be fundamental in governing aberrant VSMC remodeling.


Assuntos
Aorta/metabolismo , Perfilação da Expressão Gênica , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/biossíntese , Estresse Mecânico , Aorta/citologia , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia
2.
Can J Physiol Pharmacol ; 94(9): 1007-14, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27434139

RESUMO

Hyperglycemia-related endothelial dysfunction is believed to be the crux of diabetes-associated micro- and macro-vascular complications. We conducted a systematic transcriptional survey to screen for human endothelial long non-coding RNAs (lncRNAs) regulated by elevated glucose levels. lncRNAs and protein-coding transcripts from human umbilical vein endothelial cells (HUVECs) cultured under high (25 mmol/L) or normal (5 mmol/L) glucose conditions for 24 h were profiled with the Arraystar Human LncRNA Expression Microarray V3.0. Of the 30 586 lncRNAs screened, 100 were significantly upregulated and 186 appreciably downregulated (P < 0.05) in response to high-glucose exposure. In the same HUVEC samples, 133 of the 26 109 mRNAs screened were upregulated and 166 downregulated. Of these 299 differentially expressed mRNAs, 26 were significantly associated with 28 differentially expressed long intergenic non-coding RNAs (P < 0.05). Bioinformatics analyses indicated that the mRNAs most upregulated are primarily enriched in axon guidance signaling pathways; those most downregulated are notably involved in pathways targeting vascular smooth muscle cell contraction, dopaminergic signaling, ubiquitin-mediated proteolysis, and adrenergic signaling. This is the first lncRNA and mRNA transcriptome profile of high-glucose-mediated changes in human endothelial cells. These observations may prove novel insights into novel regulatory molecules and pathways of hyperglycemia-related endothelial dysfunction and, accordingly, diabetes-associated vascular disease.


Assuntos
Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Perfilação da Expressão Gênica , Glucose/farmacologia , RNA Longo não Codificante/genética , Transcriptoma/efeitos dos fármacos , Células Cultivadas , Humanos , Transdução de Sinais/genética
3.
Int J Vasc Med ; 2016: 2459687, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144026

RESUMO

Objective. To evaluate the relationship between TGFß signaling and endothelial lncRNA expression. Methods. Human umbilical vein endothelial cell (HUVECs) lncRNAs and mRNAs were profiled with the Arraystar Human lncRNA Expression Microarray V3.0 after 24 hours of exposure to TGFß1 (10 ng/mL). Results. Of the 30,584 lncRNAs screened, 2,051 were significantly upregulated and 2,393 were appreciably downregulated (P < 0.05) in response to TGFß. In the same HUVEC samples, 2,148 of the 26,106 mRNAs screened were upregulated and 1,290 were downregulated. Of these 2,051 differentially expressed upregulated lncRNAs, MALAT1, which is known to be induced by TGFß in endothelial cells, was the most (~220-fold) upregulated lncRNA. Bioinformatics analyses indicated that the differentially expressed upregulated mRNAs are primarily enriched in hippo signaling, Wnt signaling, focal adhesion, neuroactive ligand-receptor interaction, and pathways in cancer. The most downregulated are notably involved in olfactory transduction, PI3-Akt signaling, Ras signaling, neuroactive ligand-receptor interaction, and apoptosis. Conclusions. This is the first lncRNA and mRNA transcriptome profile of TGFß-mediated changes in human endothelial cells. These observations may reveal potential new targets of TGFß in endothelial cells and novel therapeutic avenues for cardiovascular disease-associated endothelial dysfunction.

4.
Atherosclerosis ; 245: 1-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26687997

RESUMO

OBJECTIVE: Monocyte-derived microparticles (mono-MPs) are emerging as critical transducers of inflammatory signals, and have been suggested to link cardiovascular risk factors to vascular injury. Since adiponectin has been proposed to exert multiple anti-inflammatory and vasculoprotective effects, we hypothesized that it might serve to limit the production and/or action of mono-MPs. METHODS: Flow cytometry and western blot studies were conducted on THP-1 cells, THP-1-derived MPs, human umbilical vein endothelial cells (HUVECs), peripheral blood CD14+ monocytes and mice to evaluate the effects of adiponectin on mono-MPs. RESULTS: Adiponectin attenuated lipopolysaccharide (LPS)-evoked MP release from THP-1 monocytes (30% difference) and peripheral blood monocytes (both P < 0.05) as well as dampened LPS-induced mono-MP generation in vivo. Furthermore, peritoneal monocytes from Adipoq(-/-) mice generated significantly greater MPs than those from Adipoq(+/+) littermates in the absence (2.3 fold difference, P < 0.05) and presence (1.6 fold difference, P < 0.05) of LPS. LPS-induced MP expression of NLRP3 inflammasome and its key components, namely cleaved ASC, caspase-1 and IL-1ß (pro- and cleaved), were markedly attenuated by adiponectin. HUVECs incubated with MPs from LPS-treated THP-1 cells exhibited increased VCAM-1 levels and adhesion to THP-1 cells. Adiponectin abrogated these effects. From a mechanistic standpoint, the effects of adiponectin on MP release and molecular signaling occurred at least in part through the AMPK, Akt and NFκB pathways. CONCLUSION: Adiponectin exerts novel effects to limit the production and action of mono-MPs, underscoring yet another pleiotropic effect of this adipokine.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Adiponectina/genética , Aterosclerose/genética , Regulação da Expressão Gênica , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA/genética , Proteínas Quinases Ativadas por AMP/biossíntese , Adiponectina/biossíntese , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Endotélio Vascular/metabolismo , Endotélio Vascular/ultraestrutura , Humanos , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Monócitos/metabolismo , Monócitos/ultraestrutura , NF-kappa B/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Transdução de Sinais
5.
Vasc Cell ; 7: 7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26301087

RESUMO

The pulsatile nature of blood flow exposes vascular smooth muscle cells (VSMCs) in the vessel wall to mechanical stress, in the form of circumferential and longitudinal stretch. Cyclic stretch evokes VSMC proliferation, apoptosis, phenotypic switching, migration, alignment, and vascular remodeling. Given that these responses have been observed in many cardiovascular diseases, a defined understanding of their underlying mechanisms may provide critical insight into the pathophysiology of cardiovascular derangements. Cyclic stretch-triggered VSMC responses and their effector mechanisms have been studied in vitro using tension systems that apply either uniaxial or equibiaxial stretch to cells grown on an elastomer-bottomed culture plate and ex vivo by stretching whole vein segments with small weights. This review will focus mainly on VSMC responses to the in vitro application of mechanical stress, outlining the inconsistencies in acquired data, and comparing them to in vivo or ex vivo findings. Major discrepancies in data have been seen in mechanical stress-induced proliferation, apoptosis, and phenotypic switching responses, depending on the stretch conditions. These discrepancies stem from variations in stretch conditions such as degree, axis, duration, and frequency of stretch, wave function, membrane coating, cell type, cell passage number, culture media content, and choice of in vitro model. Further knowledge into the variables that cause these incongruities will allow for improvement of the in vitro application of cyclic stretch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...