Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661211

RESUMO

Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.

2.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405983

RESUMO

Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.

3.
J Lipid Res ; 61(8): 1142-1149, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32482717

RESUMO

LCAT converts free cholesterol to cholesteryl esters in the process of reverse cholesterol transport. Familial LCAT deficiency (FLD) is a genetic disease that was first described by Kaare R. Norum and Egil Gjone in 1967. This report is a summary from a 2017 symposium where Dr. Norum recounted the history of FLD and leading experts on LCAT shared their results. The Tesmer laboratory shared structural findings on LCAT and the close homolog, lysosomal phospholipase A2. Results from studies of FLD patients in Finland, Brazil, Norway, and Italy were presented, as well as the status of a patient registry. Drs. Kuivenhoven and Calabresi presented data from carriers of genetic mutations suggesting that FLD does not necessarily accelerate atherosclerosis. Dr. Ng shared that LCAT-null mice were protected from diet-induced obesity, insulin resistance, and nonalcoholic fatty liver disease. Dr. Zhou presented multiple innovations for increasing LCAT activity for therapeutic purposes, whereas Dr. Remaley showed results from treatment of an FLD patient with recombinant human LCAT (rhLCAT). Dr. Karathanasis showed that rhLCAT infusion in mice stimulates cholesterol efflux and suggested that it could also enhance cholesterol efflux from macrophages. While the role of LCAT in atherosclerosis remains elusive, the consensus is that a continued study of both the enzyme and disease will lead toward better treatments for patients with heart disease and FLD.


Assuntos
Pesquisa Biomédica , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Animais , Humanos
4.
Commun Biol ; 3(1): 28, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31942029

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) catalyzes a critical step of reverse cholesterol transport by esterifying cholesterol in high density lipoprotein (HDL) particles. LCAT is activated by apolipoprotein A-I (ApoA-I), which forms a double belt around HDL, however the manner in which LCAT engages its lipidic substrates and ApoA-I in HDL is poorly understood. Here, we used negative stain electron microscopy, crosslinking, and hydrogen-deuterium exchange studies to refine the molecular details of the LCAT-HDL complex. Our data are consistent with LCAT preferentially binding to the edge of discoidal HDL near the boundary between helix 5 and 6 of ApoA-I in a manner that creates a path from the lipid bilayer to the active site of LCAT. Our results provide not only an explanation why LCAT activity diminishes as HDL particles mature, but also direct support for the anti-parallel double belt model of HDL, with LCAT binding preferentially to the helix 4/6 region.


Assuntos
Lipoproteínas HDL/química , Modelos Moleculares , Complexos Multiproteicos/química , Fosfatidilcolina-Esterol O-Aciltransferase/química , Conformação Proteica , Sítios de Ligação , Domínio Catalítico , Lisina/química , Lisina/metabolismo , Espectrometria de Massas , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Ligação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade
5.
Elife ; 72018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30479275

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) and LCAT-activating compounds are being investigated as treatments for coronary heart disease (CHD) and familial LCAT deficiency (FLD). Herein we report the crystal structure of human LCAT in complex with a potent piperidinylpyrazolopyridine activator and an acyl intermediate-like inhibitor, revealing LCAT in an active conformation. Unlike other LCAT activators, the piperidinylpyrazolopyridine activator binds exclusively to the membrane-binding domain (MBD). Functional studies indicate that the compound does not modulate the affinity of LCAT for HDL, but instead stabilizes residues in the MBD and facilitates channeling of substrates into the active site. By demonstrating that these activators increase the activity of an FLD variant, we show that compounds targeting the MBD have therapeutic potential. Our data better define the substrate binding site of LCAT and pave the way for rational design of LCAT agonists and improved biotherapeutics for augmenting or restoring reverse cholesterol transport in CHD and FLD patients.


Assuntos
HDL-Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Domínio Catalítico , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Lipídeos de Membrana/metabolismo , Mutação/genética , Fosfatidilcolina-Esterol O-Aciltransferase/química , Conformação Proteica , Eletricidade Estática , Relação Estrutura-Atividade
6.
Nucleic Acids Res ; 46(16): 8500-8515, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30053104

RESUMO

Most RecQ DNA helicases share a conserved domain arrangement that mediates their activities in genomic stability. This arrangement comprises a helicase motor domain, a RecQ C-terminal (RecQ-C) region including a winged-helix (WH) domain, and a 'Helicase and RNase D C-terminal' (HRDC) domain. Single-molecule real-time translocation and DNA unwinding by full-length Escherichia coli RecQ and variants lacking either the HRDC or both the WH and HRDC domains was analyzed. RecQ operated under two interconvertible kinetic modes, 'slow' and 'normal', as it unwound duplex DNA and translocated on single-stranded (ss) DNA. Consistent with a crystal structure of bacterial RecQ bound to ssDNA by base stacking, abasic sites blocked RecQ unwinding. Removal of the HRDC domain eliminates the slow mode while preserving the normal mode of activity. Unexpectedly, a RecQ variant lacking both the WH and HRDC domains retains weak helicase activity. The inclusion of E. coli ssDNA-binding protein (SSB) induces a third 'fast' unwinding mode four times faster than the normal RecQ mode and enhances the overall helicase activity (affinity, rate, and processivity). SSB stimulation was, furthermore, observed in the RecQ deletion variants, including the variant missing the WH domain. Our results support a model in which RecQ and SSB have multiple interacting modes.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/enzimologia , RecQ Helicases/fisiologia , Deleção de Genes , Sequências Repetidas Invertidas , Cinética , Modelos Moleculares , Pinças Ópticas , Conformação Proteica , Domínios Proteicos , RecQ Helicases/genética , Imagem Individual de Molécula
7.
J Lipid Res ; 59(7): 1205-1218, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724779

RESUMO

Lysosomal phospholipase A2 (LPLA2) is characterized by broad substrate recognition, peak activity at acidic pH, and the transacylation of lipophilic alcohols, especially N-acetyl-sphingosine. Prior structural analysis of LPLA2 revealed the presence of an atypical acidic residue, Asp13, in the otherwise hydrophobic active site cleft. We hypothesized that Asp13 contributed to the pH profile and/or substrate preference of LPLA2 for unsaturated acyl chains. To test this hypothesis, we substituted Asp13 for alanine, cysteine, or phenylalanine; then, we monitored the formation of 1-O-acyl-N-acetylsphingosine to measure the hydrolysis of sn-1 versus sn-2 acyl groups on a variety of glycerophospholipids. Substitutions with Asp13 yielded significant enzyme activity at neutral pH (7.4) and perturbed the selectivity for mono- and double-unsaturated acyl chains. However, this position played no apparent role in selecting for either the acyl acceptor or the head group of the glycerophospholipid. Our modeling indicates that Asp13 and its substitutions contribute to the pH activity profile of LPLA2 and to acyl chain selectivity by forming part of a hydrophobic track occupied by the scissile acyl chain.


Assuntos
Lisossomos/enzimologia , Fosfolipases A2/metabolismo , Acilação , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Mutação , Fosfolipases A2/química , Fosfolipases A2/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
J Biol Chem ; 292(49): 20313-20327, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29030428

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) plays a key role in reverse cholesterol transport by transferring an acyl group from phosphatidylcholine to cholesterol, promoting the maturation of high-density lipoproteins (HDL) from discoidal to spherical particles. LCAT is activated through an unknown mechanism by apolipoprotein A-I (apoA-I) and other mimetic peptides that form a belt around HDL. Here, we report the crystal structure of LCAT with an extended lid that blocks access to the active site, consistent with an inactive conformation. Residues Thr-123 and Phe-382 in the catalytic domain form a latch-like interaction with hydrophobic residues in the lid. Because these residues are mutated in genetic disease, lid displacement was hypothesized to be an important feature of apoA-I activation. Functional studies of site-directed mutants revealed that loss of latch interactions or the entire lid enhanced activity against soluble ester substrates, and hydrogen-deuterium exchange (HDX) mass spectrometry revealed that the LCAT lid is extremely dynamic in solution. Upon addition of a covalent inhibitor that mimics one of the reaction intermediates, there is an overall decrease in HDX in the lid and adjacent regions of the protein, consistent with ordering. These data suggest a model wherein the active site of LCAT is shielded from soluble substrates by a dynamic lid until it interacts with HDL to allow transesterification to proceed.


Assuntos
Apolipoproteína A-I/fisiologia , Fosfatidilcolina-Esterol O-Aciltransferase/química , Domínio Catalítico , Cristalografia por Raios X , Medição da Troca de Deutério , Ativação Enzimática , Humanos , Lipoproteínas HDL/metabolismo , Mutagênese Sítio-Dirigida , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Conformação Proteica
9.
J Pharmacol Exp Ther ; 362(2): 306-318, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576974

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive ß-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators.


Assuntos
Cisteína/fisiologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Compostos de Sulfidrila/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Células HEK293 , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferase/química , Compostos de Sulfidrila/química
10.
J Biomol Screen ; 21(6): 626-33, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26962873

RESUMO

Induction of the Fanconi anemia (FA) DNA repair pathway is a common mechanism by which tumors evolve resistance to DNA crosslinking chemotherapies. Proper execution of the FA pathway requires interaction between the FA complementation group M protein (FANCM) and the RecQ-mediated genome instability protein (RMI) complex, and mutations that disrupt FANCM/RMI interactions sensitize cells to DNA crosslinking agents. Inhibitors that block FANCM/RMI complex formation could be useful therapeutics for resensitizing tumors that have acquired chemotherapeutic resistance. To identify such inhibitors, we have developed and validated high-throughput fluorescence polarization and proximity assays that are sensitive to inhibitors that disrupt interactions between the RMI complex and its binding site on FANCM (a peptide referred to as MM2). A pilot screen of 74,807 small molecules was performed using the fluorescence polarization assay. Hits from the primary screen were further tested using the proximity assay, and an orthogonal proximity assay was used to assess inhibitor selectivity. Direct physical interaction between the RMI complex and the most selective inhibitor identified through the screening process was measured by surface plasmon resonance and isothermal titration calorimetry. Observation of direct binding by this small molecule validates the screening protocol.


Assuntos
Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Anemia de Fanconi/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Complexos Multiproteicos/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Dano ao DNA/efeitos dos fármacos , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Reparo do DNA/efeitos dos fármacos , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , RecQ Helicases/antagonistas & inibidores , RecQ Helicases/genética
11.
Proc Natl Acad Sci U S A ; 112(44): 13555-60, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483503

RESUMO

Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play a key role in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structure, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a cDNA hairpin. It is not clear how NC specifically destabilizes TAR RNA but does not strongly destabilize the resulting annealed RNA-DNA hybrid structure, which must be formed for reverse transcription to continue. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium TAR stability and unfolding barrier for TAR RNA. Experiments show that adding NC lowers the transition state barrier height while also dramatically shifting the barrier location. Incorporating TAR destabilization by NC into the mfold-based model reveals that a subset of preferential protein binding sites is responsible for the observed changes in the unfolding landscape, including the unusual shift in the transition state. We measure the destabilization induced at these NC binding sites and find that NC preferentially targets TAR RNA by binding to specific sequence contexts that are not present on the final annealed RNA-DNA hybrid structure. Thus, specific binding alters the entire RNA unfolding landscape, resulting in the dramatic destabilization of this specific structure that is required for reverse transcription.


Assuntos
Repetição Terminal Longa de HIV , Proteínas do Nucleocapsídeo/química , Dobramento de RNA , RNA Viral/química , Algoritmos , Sequência de Bases , Sítios de Ligação/genética , HIV-1/química , HIV-1/genética , HIV-1/metabolismo , Cinética , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Ligação Proteica , Estabilidade de RNA , RNA Viral/genética , RNA Viral/metabolismo , Transcrição Reversa , Termodinâmica
12.
Proc Natl Acad Sci U S A ; 112(14): 4292-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831501

RESUMO

RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. Here, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ∼90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATP hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. This bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.


Assuntos
Bactérias/enzimologia , Cronobacter/enzimologia , DNA/química , RecQ Helicases/química , Trifosfato de Adenosina/química , Anisotropia , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , DNA de Cadeia Simples/química , Escherichia coli/enzimologia , Genoma Bacteriano , Hidrólise , Ligação Proteica
13.
Cell Mol Life Sci ; 70(21): 4067-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23543275

RESUMO

RecQ DNA helicases are critical for proper maintenance of genomic stability, and mutations in multiple human RecQ genes are linked with genetic disorders characterized by a predisposition to cancer. RecQ proteins are conserved from prokaryotes to humans and in all cases form higher-order complexes with other proteins to efficiently execute their cellular functions. The focus of this review is a conserved complex that is formed between RecQ helicases and type-I topoisomerases. In humans, this complex is referred to as the BLM dissolvasome or BTR complex, and is comprised of the RecQ helicase BLM, topoisomerase IIIα, and the RMI proteins. The BLM dissolvasome functions to resolve linked DNA intermediates without exchange of genetic material, which is critical in somatic cells. We will review the history of this complex and highlight its roles in DNA replication, recombination, and repair. Additionally, we will review recently established interactions between BLM dissolvasome and a second set of genome maintenance factors (the Fanconi anemia proteins) that appear to allow coordinated genome maintenance efforts between the two systems.


Assuntos
Reparo do DNA , Replicação do DNA , RecQ Helicases/metabolismo , Anáfase , Animais , Síndrome de Bloom/genética , DNA/genética , Dano ao DNA , Anemia de Fanconi/genética , Instabilidade Genômica , Humanos , Mutação , Estrutura Terciária de Proteína , RecQ Helicases/genética , RecQ Helicases/fisiologia
14.
J Bacteriol ; 195(10): 2255-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475972

RESUMO

The strict human pathogen Neisseria gonorrhoeae utilizes homologous recombination to antigenically vary the pilus, thus evading the host immune response. High-frequency gene conversion reactions between many silent pilin loci and the expressed pilin locus (pilE) allow for numerous pilus variants per strain to be produced from a single strain. For pilin antigenic variation (Av) to occur, a guanine quartet (G4) structure must form upstream of pilE. The RecQ helicase is one of several recombination or repair enzymes required for efficient levels of pilin Av, and RecQ family members have been shown to bind to and unwind G4 structures. Additionally, the vast majority of RecQ helicase family members encode one "helicase and RNase D C-terminal" (HRDC) domain, whereas the N. gonorrhoeae RecQ helicase gene encodes three HRDC domains, which are critical for pilin Av. Here, we confirm that deletion of RecQ HRDC domains 2 and 3 causes a decrease in the frequency of pilin Av comparable to that obtained with a functional knockout. We demonstrate that the N. gonorrhoeae RecQ helicase can bind and unwind the pilE G4 structure. Deletion of the RecQ HRDC domains 2 and 3 resulted in a decrease in G4 structure binding and unwinding. These data suggest that the decrease in pilin Av observed in the RecQ HRDC domain 2 and 3 deletion mutant is a result of the enzyme's inability to efficiently bind and unwind the pilE G4 structure.


Assuntos
Variação Antigênica/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/metabolismo , RecQ Helicases/química , RecQ Helicases/metabolismo , Variação Antigênica/genética , Proteínas de Bactérias/genética , Dicroísmo Circular , Proteínas de Fímbrias/genética , Polarização de Fluorescência , Neisseria gonorrhoeae/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , RecQ Helicases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...