Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(21): 21105-21115, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37889165

RESUMO

We employ a first-principles computational workflow to screen for optically accessible, high-spin point defects in wide band gap, two-dimensional (2D) crystals. Starting from an initial set of 5388 point defects, comprising both native and extrinsic, single and double defects in ten previously synthesized 2D host materials, we identify 596 defects with a triplet ground state. For these defects, we calculate the defect formation energy, hyperfine (HF) coupling, and zero-field splitting (ZFS) tensors. For 39 triplet transitions exhibiting particularly low Huang-Rhys factors, we calculate the full photoluminescence (PL) spectrum. Our approach reveals many spin defects with narrow PL line shapes and emission frequencies covering a broad spectral range. Most of the defects are hosted in hexagonal BN (hBN), which we ascribe to its high stiffness, but some are also found in MgI2, MoS2, MgBr2 and CaI2. As specific examples, we propose the defects vSMoS0 and NiSMoS0 in MoS2 as interesting candidates with potential applications to magnetic field sensors and quantum information technology.

2.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687783

RESUMO

Kaonic atom X-ray spectroscopy is a consolidated technique for investigations on the physics of strong kaon-nucleus/nucleon interaction. Several experiments have been conducted regarding the measurement of soft X-ray emission (<20 keV) from light kaonic atoms (hydrogen, deuterium, and helium). Currently, there have been new research activities within the framework of the SIDDHARTA-2 experiment and EXCALIBUR proposal focusing on performing precise and accurate measurements of hard X-rays (>20 keV) from intermediate kaonic atoms (carbon, aluminum, and sulfur). In this context, we investigated cadmium-zinc-telluride (CdZnTe or CZT) detectors, which have recently demonstrated high-resolution capabilities for hard X-ray and gamma-ray detection. A demonstrator prototype based on a new cadmium-zinc-telluride quasi-hemispherical detector and custom digital pulse processing electronics was developed. The detector covered a detection area of 1 cm2 with a single readout channel and interesting room-temperature performance with energy resolution of 4.4% (2.6 keV), 3% (3.7 keV), and 1.4% (9.3 keV) FWHM at 59.5, 122.1, and 662 keV, respectively. The results from X-ray measurements at the DAΦNE collider at the INFN National Laboratories of Frascati (Italy) are also presented with particular attention to the effects and rejection of electromagnetic and hadronic background.

3.
Entropy (Basel) ; 25(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36832661

RESUMO

Models of dynamical wave function collapse consistently describe the breakdown of the quantum superposition with the growing mass of the system by introducing non-linear and stochastic modifications to the standard Schrödinger dynamics. Among them, Continuous Spontaneous Localization (CSL) was extensively investigated both theoretically and experimentally. Measurable consequences of the collapse phenomenon depend on different combinations of the phenomenological parameters of the model-the strength λ and the correlation length rC-and have led, so far, to the exclusion of regions of the admissible (λ-rC) parameters space. We developed a novel approach to disentangle the λ and rC probability density functions, which discloses a more profound statistical insight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...