Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 12(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302490

RESUMO

Physiologically-based pharmacokinetic (PBPK) modeling is a well-recognized method for quantitatively predicting the effect of intrinsic/extrinsic factors on drug exposure. However, there are only few verified, freely accessible, modifiable, and comprehensive drug-drug interaction (DDI) PBPK models. We developed a qualified whole-body PBPK DDI network for cytochrome P450 (CYP) CYP2C19 and CYP1A2 interactions. Template PBPK models were developed for interactions between fluvoxamine, S-mephenytoin, moclobemide, omeprazole, mexiletine, tizanidine, and ethinylestradiol as the perpetrators or victims. Predicted concentration-time profiles accurately described a validation dataset, including data from patients with genetic polymorphisms, demonstrating that the models characterized the CYP2C19 and CYP1A2 network over the whole range of DDI studies investigated. The models are provided on GitHub (GitHub Inc., San Francisco, CA, USA), expanding the library of publicly available qualified whole-body PBPK models for DDI predictions, and they are thereby available to support potential recommendations for dose adaptations, support labeling, inform the design of clinical DDI trials, and potentially waive those.

2.
Eur J Pharm Sci ; 136: 104939, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31195071

RESUMO

The liver is a well-known immunotolerogenic environment, which provides the adequate setting for liver infectious pathogens persistence such as the hepatitis B virus (HBV). Consequently, HBV infection can derive in the development of chronic disease in a proportion of the patients. If this situation persists in time, chronic hepatitis B (CHB) would end in cirrhosis, hepatocellular carcinoma and eventually, the death of the patient. It is thought that this immunotolerogenic environment is the result of complex interactions between different elements of the immune system and the viral biology. Therefore, the purpose of this work is to unravel the mechanisms implied in the development of CHB and to design a tool able to help in the study of adequate therapies. Firstly, a conceptual framework with the main components of the immune system and viral dynamics was constructed providing an overall insight on the pathways and interactions implied in this disease. Secondly, a review of the literature was performed in a modular fashion: (i) viral dynamics, (ii) innate immune response, (iii) humoral and (iv) cellular adaptive immune responses and (v) tolerogenic aspects. Finally, the information collected was integrated into a single topological representation that could serve as the plan for the systems pharmacology model architecture. This representation can be considered as the previous unavoidable step to the construction of a quantitative model that could assist in biomarker and target identification, drug design and development, dosing optimization and disease progression analysis.


Assuntos
Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B/imunologia , Imunidade/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Humanos , Fígado/imunologia , Fígado/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...