Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(10): 9102-9109, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28221764

RESUMO

The bandgap tunability of (Si)GeSn group IV semiconductors opens a new era in Si-technology. Depending on the Si/Sn contents, direct and indirect bandgaps in the range of 0.4-0.8 eV can be obtained, offering a broad spectrum of both photonic and low power electronic applications. In this work, we systematically studied capacitance-voltage characteristics of high-k/metal gate stacks formed on GeSn and SiGeSn alloys with Sn-contents ranging from 0 to 14 at. % and Si-contents from 0 to 10 at. % particularly focusing on the minority carrier inversion response. A clear correlation between the Sn-induced shrinkage of the bandgap energy and enhanced minority carrier response was confirmed using temperature and frequency dependent capacitance voltage-measurements, in good agreement with k.p theory predictions and photoluminescence measurements of the analyzed epilayers as reported earlier. The enhanced minority generation rate for higher Sn-contents can be firmly linked to the bandgap reduction in the GeSn epilayer without significant influence of substrate/interface effects. It thus offers a unique possibility to analyze intrinsic defects in (Si)GeSn epilayers. The extracted dominant defect level for minority carrier inversion lies approximately 0.4 eV above the valence band edge in the studied Sn-content range (0-12.5 at. %). This finding is of critical importance since it shows that the presence of Sn by itself does not impair the minority carrier lifetime. Therefore, the continuous improvement of (Si)GeSn material quality should yield longer nonradiative recombination times which are required for the fabrication of efficient light detectors and to obtain room temperature lasing action.

2.
ACS Appl Mater Interfaces ; 8(20): 13133-9, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27149260

RESUMO

(Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn binaries, allowing the use of the existing Si technology. Despite the multielemental interface and large Sn content of up to 14 atom %, the HfO2/(Si)GeSn capacitors show small frequency dispersion and stretch-out. The formed TaN/HfO2/(Si)GeSn capacitors present a low leakage current of 2 × 10(-8) A/cm(2) at -1 V and a high breakdown field of ∼8 MV/cm. For large Sn content SiGeSn/GeSn direct band gap heterostructures, process temperatures below 350 °C are required for integration. We developed an atomic vapor deposition process for TaN metal gate on HfO2 high-k dielectric and validated it by resistivity as well as temperature and frequency dependent capacitance-voltage measurements of capacitors on SiGeSn and GeSn. The densities of interface traps are deduced to be in the low 10(12) cm(-2) eV(-1) range and do not depend on the Sn-concentration. The new processes developed here are compatible with (Si)GeSn integration in large scale applications.

3.
Opt Express ; 24(2): 1358-67, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832516

RESUMO

We present results on CVD growth and electro-optical characterization of Ge(0.92)Sn(0.08)/Ge p-i-n heterostructure diodes. The suitability of Ge as barriers for direct bandgap GeSn active layers in different LED geometries, such as double heterostructures and multi quantum wells is discussed based on electroluminescence data. Theoretical calculations by effective mass and 6 band k∙p method reveal low barrier heights for this specific structure. Best configurations offer only a maximum barrier height for electrons of about 40 meV at the Γ point at room temperature (e.g. 300 K), evidently insufficient for proper light emitting devices. An alternative solution using SiGeSn as barrier material is introduced, which provides appropriate band alignment for both electrons and holes resulting in efficient confinement in direct bandgap GeSn wells. Finally, epitaxial growth of such a complete SiGeSn/GeSn/SiGeSn double heterostructure including doping is shown.

4.
J Chem Phys ; 138(15): 154709, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23614438

RESUMO

Rare earth oxides are promising candidates for future integration into nano-electronics. A key property of these oxides is their ability to form silicates in order to replace the interfacial layer in Si-based complementary metal-oxide field effect transistors. In this work a detailed study of lanthanum lutetium oxide based gate stacks is presented. Special attention is given to the silicate formation at temperatures typical for CMOS processing. The experimental analysis is based on hard x-ray photoemission spectroscopy complemented by standard laboratory experiments as Rutherford backscattering spectrometry and high-resolution transmission electron microscopy. Homogenously distributed La silicate and Lu silicate at the Si interface are proven to form already during gate oxide deposition. During the thermal treatment Si atoms diffuse through the oxide layer towards the TiN metal gate. This mechanism is identified to be promoted via Lu-O bonds, whereby the diffusion of La was found to be less important.

5.
Nanotechnology ; 21(10): 105701, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20154367

RESUMO

We present electrical characterization of nickel monosilicide (NiSi) contacts formed on strained and unstrained silicon nanowires (NWs), which were fabricated by top-down processing of initially As(+) implanted and activated strained and unstrained silicon-on-insulator (SOI) substrates. The resistivity of doped Si NWs and the contact resistivity of the NiSi to Si NW contacts are studied as functions of the As(+) ion implantation dose and the cross-sectional area of the wires. Strained silicon NWs show lower resistivity for all doping concentrations due to their enhanced electron mobility compared to the unstrained case. An increase in resistivity with decreasing cross section of the NWs was observed for all implantation doses. This is ascribed to the occurrence of dopant deactivation. Comparing the silicidation of uniaxially tensile strained and unstrained Si NWs shows no difference in silicidation speed and in contact resistivity between NiSi/Si NW. Contact resistivities as low as 1.2 x 10(-8) Omega cm(-2) were obtained for NiSi contacts to both strained and unstrained Si NWs. Compared to planar contacts, the NiSi/Si NW contact resistivity is two orders of magnitude lower.


Assuntos
Nanotecnologia/métodos , Nanofios/química , Níquel/química , Compostos de Silício/química , Silício/química , Condutividade Elétrica , Microscopia Eletrônica de Varredura , Nanofios/ultraestrutura , Temperatura
6.
Nanotechnology ; 20(6): 065303, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-19417379

RESUMO

Regularly arrayed microstrip regions of width approximately 1.4 microm and length extending up to approximately 5 mm, consisting of ZnO nanoparticles (NPs) of diameter approximately 50 nm, were fabricated on silica substrates by a two-step process: i.e., selected-area ion implantation and thermal oxidation. The implantation of 60 keV Zn ions in periodic microstrip regions via a resist mask generated periodic grooves with large wings on the surface of silica glass, which can be ascribed to the radiation-induced plastic deformation of silica and sputtering loss. This is the lowest record of the electronic energy loss (S(e)) value to induce the radiation-induced plastic deformation of silica, while no or very low threshold energy has been predicted from a recent study. After thermal oxidation at 700 degrees C for 1 h, the groove structures with the wings disappeared, and periodic microstrips of ZnO nanoparticle aggregates up to 5 mm long appeared on the surface of the substrate. A clear free-exciton peak due to ZnO NPs is observed from these microstrip structures both in optical absorption and photoluminescence spectra.

7.
Nanotechnology ; 18(39): 395707, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21730432

RESUMO

Metallic zinc nanoparticles (NPs) of 5-15 nm in diameter, formed in silica glass (SiO(2)) by Zn ion implantation of 60 keV, showed a strong ultraviolet absorption peak at around 4.8 eV, which has been assigned as the surface plasmon resonance (SPR) of Zn NPs, and another small peak at 1.2 eV, which has never been reported before. To identify the origin of the 1.2 eV peak, the correlations of thermal stability between the two peaks and Zn NPs were evaluated under annealing both in a vacuum (pure thermal stability) and in oxygen gas (thermal oxidation stability). The well-correlated stability between the 1.2 eV peak, the 4.8 eV peak and Zn NPs indicates that the 1.2 eV peak is not ascribed to radiation-induced defects but to the Zn NPs. The 1.2 eV peak can be ascribed to an SPR of Zn NPs in SiO(2), because the peak satisfies the criterion of the SPR of metallic NPs. Since the 4.8 eV peak is also expected to satisfy the criterion, Zn NPs in SiO(2) have two SPRs at 1.2 and 4.8 eV.

8.
Phys Rev B Condens Matter ; 51(18): 12223-12227, 1995 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9977992
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...