Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 542: 63-75, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180070

RESUMO

The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Antibacterianos/análise , Inibidores Enzimáticos/análise , Ensaios de Triagem em Larga Escala , Nucleotidiltransferases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Nucleotidiltransferases/metabolismo , Proteínas Recombinantes/metabolismo , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/enzimologia
2.
PLoS One ; 9(8): e106243, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25171339

RESUMO

The methylerythritol phosphate (MEP) pathway found in many bacteria governs the synthesis of isoprenoids, which are crucial lipid precursors for vital cell components such as ubiquinone. Because mammals synthesize isoprenoids via an alternate pathway, the bacterial MEP pathway is an attractive target for novel antibiotic development, necessitated by emerging antibiotic resistance as well as biodefense concerns. The first committed step in the MEP pathway is the reduction and isomerization of 1-deoxy-D-xylulose-5-phosphate (DXP) to methylerythritol phosphate (MEP), catalyzed by MEP synthase. To facilitate drug development, we cloned, expressed, purified, and characterized MEP synthase from Yersinia pestis. Enzyme assays indicate apparent kinetic constants of KMDXP = 252 µM and KMNADPH = 13 µM, IC50 values for fosmidomycin and FR900098 of 710 nM and 231 nM respectively, and Ki values for fosmidomycin and FR900098 of 251 nM and 101 nM respectively. To ascertain if the Y. pestis MEP synthase was amenable to a high-throughput screening campaign, the Z-factor was determined (0.9) then the purified enzyme was screened against a pilot scale library containing rationally designed fosmidomycin analogs and natural product extracts. Several hit molecules were obtained, most notably a natural product allosteric affector of MEP synthase and a rationally designed bisubstrate derivative of FR900098 (able to associate with both the NADPH and DXP binding sites in MEP synthase). It is particularly noteworthy that allosteric regulation of MEP synthase has not been described previously. Thus, our discovery implicates an alternative site (and new chemical space) for rational drug development.


Assuntos
Aldose-Cetose Isomerases/química , Proteínas de Bactérias/química , Yersinia pestis/enzimologia , Aldose-Cetose Isomerases/genética , Regulação Alostérica , Proteínas de Bactérias/genética , Catálise , Eritritol/análogos & derivados , Eritritol/biossíntese , Eritritol/química , Fosfomicina/análogos & derivados , Fosfomicina/química , Cinética , Yersinia pestis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...