Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 896167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059986

RESUMO

Background: The Janus kinase (JAK) 1/2 inhibitor ruxolitinib has been approved in an indication of myelofibrosis and is a candidate for the treatment of a number of inflammatory or autoimmune diseases. We assessed the effects of ruxolitinib on lipopolysaccharide (LPS)- and poly (I:C)-induced cytokine production by human lung macrophages (LMs) and on the LMs' phagocytic activity. Methods: Human LMs were isolated from patients operated on for lung carcinoma. The LMs were cultured with ruxolitinib (0.5 × 10-7 M to 10-5 M) or budesonide (10-11 to 10-8 M) and then stimulated with LPS (10 ng·ml-1) or poly (I:C) (10 µg·ml-1) for 24 h. Cytokines released by the LMs into the supernatants were measured using ELISAs. The phagocytosis of labelled bioparticles was assessed using flow cytometry. Results: Ruxolitinib inhibited both the LPS- and poly (I:C)-stimulated production of tumor necrosis factor alpha, interleukin (IL)-6, IL-10, chemokines CCL2, and CXCL10 in a concentration-dependent manner. Ruxolitinib also inhibited the poly (I:C)- induced (but not the LPS-induced) production of IL-1ß. Budesonide inhibited cytokine production more strongly than ruxolitinib but failed to mitigate the production of CXCL10. The LMs' phagocytic activity was not impaired by the highest tested concentration (10-5 M) of ruxolitinib. Conclusion: Clinically relevant concentrations of ruxolitinib inhibited the LPS- and poly (I:C)-stimulated production of cytokines by human LMs but did not impair their phagocytic activity. Overall, ruxolitinib's anti-inflammatory activities are less intense than (but somewhat different from) those of budesonide-particularly with regard to the production of the corticosteroid-resistant chemokine CXCL-10. Our results indicate that treatment with a JAK inhibitor might be a valuable anti-inflammatory strategy in chronic obstructive pulmonary disease, Th1-high asthma, and both viral and non-viral acute respiratory distress syndromes (including coronavirus disease 2019).

2.
Front Physiol ; 10: 1267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632299

RESUMO

BACKGROUND: Bitter-taste receptors (TAS2Rs) are involved in airway relaxation but are also expressed in human blood leukocytes. We studied TAS2R expression and the effects of TAS2R agonists on the lipopolysaccharide (LPS)-induced cytokine release in human lung macrophages (LMs). METHODS: Lung macrophages were isolated from patients undergoing surgery for carcinoma. We used RT-qPCR to measure transcripts of 16 TAS2Rs (TAS2Rs 3/4/5/7/8/9/10/14/19/20/31/38/39/43/45 and 46) in unstimulated and LPS-stimulated (10 ng.mL-1) LMs. The macrophages were also incubated with TAS2R agonists for 24 h. Supernatant levels of the cytokines TNF-α, CCL3, CXCL8 and IL-10 were measured using ELISAs. RESULTS: The transcripts of all 16 TAS2Rs were detected in macrophages. The addition of LPS led to an increase in the expression of most TAS2Rs, which was significant for TAS2R7 and 38. Although the promiscuous TAS2R agonists, quinine and denatonium, inhibited the LPS-induced release of TNF-α, CCL3 and CXCL8, diphenidol was inactive. Partially selective agonists (dapsone, colchicine, strychnine, and chloroquine) and selective agonists [erythromycin (TAS2R10), phenanthroline (TAS2R5), ofloxacin (TAS2R9), and carisoprodol (TAS2R14)] also suppressed the LPS-induced cytokine release. In contrast, two other agonists [sodium cromoglycate (TAS2R20) and saccharin (TAS2R31 and 43)] were inactive. TAS2R agonists suppressed IL-10 production - suggesting that this anti-inflammatory cytokine is not involved in the inhibition of cytokine production. CONCLUSION: Human LMs expressed TAS2Rs. Experiments with TAS2R agonists' suggested the involvement of TAS2Rs 3, 4, 5, 9, 10, 14, 30, 39 and 40 in the inhibition of cytokine production. TAS2Rs may constitute new drug targets in inflammatory obstructive lung disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...