Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(8): 6342-6351, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779353

RESUMO

Ion dynamics and charge transport in 1-methyl-3-octylimidazolium ionic liquids with chloride, bromide, tetrafluoroborate, tricyanomethanide, hexafluorophosphate, triflate, tetrachloroaluminate, bis(trifluoromethylsulfonyl)imide, and heptachlorodialuminate anions are investigated by broadband dielectric spectroscopy, rheology, viscometry, and differential scanning calorimetry. A detailed analysis reveals an anion and temperature-dependent separation of characteristic molecular relaxation rates extracted from various representations of the dielectric spectra. The separation in rates extracted from the electric modulus and conductivity formalisms is interpreted as an experimental signature of significant heterogeneity in the local ion dynamics associated with the structural glass transition, viscosity, and dc ion conductivity. It is further found that the degree of dynamic heterogeneity correlates with the strengths of slow dielectric and mechanical relaxations previously attributed to the dynamics of mesoscale solvophobic aggregates. Increasing local dynamic heterogeneity correlates with an increase in the strength of the slow, aggregate dielectric relaxation and a decrease in the strength of the slow, aggregate mechanical relaxation. Accordingly, increasing local dynamic heterogeneity, brought about by change in temperature and/or cation/anion chemical structure, correlates with an increase in the static dielectric permittivities and a decrease in the contribution of aggregate dynamics to the zero-shear viscosities. The established correlation provides a new ability to distinguish between the influence of mesoscale aggregate shape/morphology versus local and mesoscale ion dynamics on the transport properties of ionic liquids.

2.
J Am Chem Soc ; 126(44): 14350-1, 2004 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-15521743

RESUMO

In this work, the suitability of imidazolium-based ionic liquid solvents is investigated for the dissolution and regeneration of silkworm (Bombyx mori) silk. Within an ionic liquid the anion plays a larger role in dictating the ultimate solubility of the silk. The dissolution of the silk in the ionic liquid is confirmed using wide-angle X-ray scattering. The dissolved silk is also processed into 100 mum-thick, two-dimensional films, and the structure of these films is examined. The rinse solvent, acetonitrile or methanol, has a profound impact on both the topography of the films and the secondary structure of the silk protein. The image depicts a silkworm cocoon dissolved in 1-butyl-3-methylimidazolium chloride and then regenerated as a film with birefringence.


Assuntos
Fibroínas/química , Animais , Bombyx/química , Cristalização , Ligação de Hidrogênio , Íons , Estrutura Secundária de Proteína , Solubilidade
3.
Inorg Chem ; 36(6): 1227-1232, 1997 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11669690

RESUMO

Gutmann acceptor numbers have been determined using (31)P nuclear magnetic resonance (NMR) for AlCl(3)/EMIC melts as well as LiCl, NaCl, and KCl neutral buffered melts. In AlCl(3)/EMIC melts, where EMIC is 1-ethyl-3-methylimidazolium chloride, the change in Gutmann acceptor number as a function of the AlCl(3):EMIC melt ratio is attributed to an equilibrium between a monoadduct of triethylphosphine oxide.AlCl(3) and a diadduct of triethylphosphine oxide.2AlCl(3). Observed acceptor numbers for the neutral buffered melts appear linear with respect to the melt's initial mole ratio of AlCl(3):EMIC prior to buffering. The lithium cation appears to be the most Lewis acidic alkali metal cation followed by the sodium and potassium cations. Possible reasons for the change in acceptor number as a function of changing alkali metal cation concentration are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...