Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891912

RESUMO

The utility of serum glial fibrillary acidic protein (GFAP) in acute ischemic stroke (AIS) has been extensively studied in recent years. Here, we aimed to assess its potential role as a cargo protein of extracellular vesicles (EVs) secreted by astrocytes (ADEVs) in response to brain ischemia. Plasma samples from eighteen AIS patients at 24 h (D1), 7 days (D7), and one month (M1) post-symptoms onset, and nine age, sex, and cardiovascular risk factor-matched healthy controls were obtained to isolate EVs using the Exoquick ULTRA EV kit. Subsets of presumed ADEVs were identified further by the expression of the glutamate aspartate transporter (GLAST) as a specific marker of astrocytes with the Basic Exo-Flow Capture kit. Western blotting has tested the presence of GFAP in ADEV cargo. Post-stroke ADEV GFAP levels were elevated at D1 and D7 but not M1 compared to controls (p = 0.007, p = 0.019, and p = 0.344, respectively). Significant differences were highlighted in ADEV GFAP content at the three time points studied (n = 12, p = 0.027) and between D1 and M1 (z = 2.65, p = 0.023). A positive correlation was observed between the modified Rankin Scale (mRS) at D7 and ADEV GFAP at D1 (r = 0.58, p = 0.010) and D7 (r = 0.57, p = 0.013), respectively. ADEV GFAP may dynamically reflect changes during the first month post-ischemia. Profiling ADEVs from peripheral blood could provide a new way to assess the central nervous system pathology.


Assuntos
Astrócitos , Vesículas Extracelulares , Proteína Glial Fibrilar Ácida , AVC Isquêmico , Humanos , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/sangue , Vesículas Extracelulares/metabolismo , Masculino , Feminino , AVC Isquêmico/metabolismo , AVC Isquêmico/sangue , Astrócitos/metabolismo , Projetos Piloto , Idoso , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso de 80 Anos ou mais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/sangue , Estudos de Casos e Controles
2.
Cureus ; 16(5): e60921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38910770

RESUMO

Introduction Lung cancer is the leading cause of oncological deaths worldwide. Various combined inflammatory indexes, such as the systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR) have shown associations with pretreatment survival prognosis in patients suffering of lung cancer with or without brain metastases. This study aimed to compare the average values of NLR, PLR, LMR, and SII in healthy patients, patients with lung cancer without any other metastases, and patients with lung cancer and brain metastases. Materials and methods In this prospective study, we have divided the patients into three groups: Group 1 included patients diagnosed with lung cancer and one or more brain metastases of lung cancer origin, Group 2 included patients diagnosed with lung cancer without known metastases, and Group 3 was the control group which included healthy subjects. Preoperative complete blood counts were extracted for all included patients and we calculated the values of SII, NLR, PLR, and LMR for each individual patient in each group. The next step was to calculate the average values of SII, NLR, PLR, and LMR for each group of patients and to identify the differences between groups. Results A total number of 228 patients were enrolled in the study. Group 1 included 67 patients with average values of SII = 2020.98, NLR = 7.25, PLR = 199.46, and LMR = 2.97. Group 2 included 88 patients with average values of SII = 1638.01, NLR = 4.58, PLR = 188.42, and LMR = 3.43. Group 3 included 73 subjects with the following average values of the inflammatory indexes: SII = 577.41, NLR = 2.34, PLR = 117.84, and LMR = 3.56. Conclusion We observed statistically significant differences in SII, NLR, and PLR among the three groups of patients, suggesting their potential role as prognostic markers. Furthermore, our analysis revealed significant correlations between inflammatory markers within lung cancer patients, highlighting their involvement in tumor microenvironment modulation. Our findings demonstrate an escalation in SII, NLR, and PLR values as the disease progresses. These parameters of inflammation and immune status are readily and cost-effectively, and repeatedly assessable in routine clinical practice.

3.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542070

RESUMO

Monomeric C-reactive protein (mCRP) has recently been implicated in the abnormal vascular activation associated with development of atherosclerosis, but it may act more specifically through mechanisms perpetuating damaged vessel inflammation and subsequent aggregation and internalization of resident macrophages. Whilst the direct effects of mCRP on endothelial cells have been characterized, the interaction with blood monocytes has, to our knowledge, not been fully defined. Here we showed that mCRP caused a strong aggregation of both U937 cell line and primary peripheral blood monocytes (PBMs) obtained from healthy donors. Moreover, this increase in clustering was dependent on focal adhesion kinase (FAK) activation (blocked by a specific inhibitor), as was the concomitant adhesive attachment to the plate, which was suggestive of macrophage differentiation. Confocal microscopy confirmed the increased expression and nuclear localization of p-FAK, and cell surface marker expression associated with M1 macrophage polarization (CD11b, CD14, and CD80, as well as iNOS) in the presence of mCRP. Inclusion of a specific CRP dissociation/mCRP inhibitor (C10M) effectively inhibited PBMs clustering, as well as abrogating p-FAK expression, and partially reduced the expression of markers associated with M1 macrophage differentiation. mCRP also increased the secretion of pro-inflammatory cytokines Interleukin-8 (IL-8) and Interleukin-1ß (IL-1ß), without notably affecting MAP kinase signaling pathways; inclusion of C10M did not perturb or modify these effects. In conclusion, mCRP modulates PBMs through a mechanism that involves FAK and results in cell clustering and adhesion concomitant with changes consistent with M1 phenotypical polarization. C10M has potential therapeutic utility in blocking the primary interaction of mCRP with the cells-for example, by protecting against monocyte accumulation and residence at damaged vessels that may be predisposed to plaque development and atherosclerosis.


Assuntos
Aterosclerose , Proteína C-Reativa , Humanos , Proteína C-Reativa/metabolismo , Monócitos/metabolismo , Inflamação/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais/metabolismo , Células U937 , Aterosclerose/metabolismo
4.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138976

RESUMO

Neurological disorders have been linked to a defective blood-brain barrier (BBB), with dysfunctions triggered by stage-specific disease mechanisms, some of these being generated through interactions in the neurovascular unit (NVU). Advanced knowledge of molecular and signaling mechanisms in the NVU and the emergence of improved experimental models allow BBB permeability prediction and the development of new brain-targeted therapies. As NVU constituents, astrocytes are the most numerous glial cells, characterized by a heterogeneity that occurs as a result of developmental and context-based gene expression profiles and the differential expression of non-coding ribonucleic acids (RNAs). Due to their heterogeneity and dynamic responses to different signals, astrocytes may have a beneficial or detrimental role in the BBB's barrier function, with deep effects on the pathophysiology of (and on the progression of) central nervous system diseases. The implication of astrocytic-derived extracellular vesicles in pathological mechanisms, due to their ability to pass the BBB, must also be considered. The molecular mechanisms of astrocytes' interaction with endothelial cells at the BBB level are considered promising therapeutic targets in different neurological conditions. Nevertheless, a personalized and well-founded approach must be addressed, due to the temporal and spatial heterogeneity of reactive astrogliosis states during disease.


Assuntos
Astrócitos , Doenças do Sistema Nervoso , Humanos , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/fisiologia , Encéfalo/metabolismo , Transporte Biológico , Doenças do Sistema Nervoso/metabolismo
5.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901807

RESUMO

Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Estudos Retrospectivos , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença
6.
Diagnostics (Basel) ; 12(11)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36359474

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive brain tumor that occurs in adults. In spite of prompt diagnosis and rapidly administered treatment, the survival expectancy is tremendously poor. Extensive research has been performed in order to establish factors to predict the outcome of GBM patients; however, worldwide accepted prognostic markers are still lacking. METHODS: We retrospectively assessed all adult patients who were diagnosed with primary GBM and underwent surgical treatment during a three-year period (January 2017-December 2019) in the Neurosurgery Department of the Emergency Clinical County Hospital of Târgu Mureș, Romania. Our aim was to find any statistically relevant connections between clinical, imagistic, and histopathological characteristics and patients' survival. RESULTS: A total of 75 patients were eventually included in our statistical analysis: 40 males and 35 females, with a median age of 61 years. The mean tumor dimension was 45.28 ± 15.52 mm, while the mean survival rate was 4 ± 6.75 months. A univariate analysis demonstrated a statistically significant impact of tumor size, pre-, and postoperative KPSI on survival rate. In addition, a Cox multivariate assessment strengthened previous findings regarding postoperative KPSI (regression coefficient -0.03, HR 0.97, 95% CI (HR) 0.96-0.99, p = 0.002) as a favorable prognostic factor and GBM size (regression coefficient 0.03, HR 1.03, 95% CI (HR) 1.01-1.05, p = 0.005) as a poor prognostic marker for patients' survival. CONCLUSIONS: The results of our retrospective study are consistent with prior scientific results that provide evidence supporting the importance of clinical (quantified by KPSI) and imagistic (particularly tumor dimensions) features as reliable prognostic factors in GBM patients' survival.

7.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233174

RESUMO

The aim of the study was to evaluate the dynamic changes of the total Natural Killer (NK) cells and different NK subpopulations according to their differentiated expression of CD16/CD56 in COVID-19 patients. Blood samples with EDTA were analyzed on day 1 (admission moment), day 5, and day 10 for the NK subtypes. At least 30,000 singlets were collected for each sample and white blood cells were gated in CD45/SSC and CD16/CD56 dot plots of fresh human blood. From the lymphocyte singlets, the NK cells subpopulations were analyzed based on the differentiated expression of surface markers and classified as follows: CD16-CD56+/++/CD16+CD56++/CD16+CD56+/CD16++CD56-. By examining the CD56 versus CD16 flow cytometry dot plots, we found four distinct NK sub-populations. These NK subtypes correspond to different NK phenotypes from secretory to cytolytic ones. There was no difference between total NK percentage of different disease forms. However, the total numbers decreased significantly both in survivors and non-survivors. Additionally, for the CD16-CD56+/++ phenotype, we observed different patterns, gradually decreasing in survivors and gradually increasing in those with fatal outcomes. Despite no difference in the proportion of the CD16-CD56++ NK cells in survivors vs. non-survivors, the main cytokine producers gradually decline during the study period in the survival group, underling the importance of adequate IFN production during the early stage of SARS-CoV-2 infection. Persistency in the circulation of CD56++ NK cells may have prognostic value in patients, with a fatal outcome. Total NK cells and the CD16+CD56+ NK subtypes exhibit significant decreasing trends across the moments for both survivors and non-survivors.


Assuntos
COVID-19 , Células Matadoras Naturais , Antígeno CD56/metabolismo , COVID-19/imunologia , Citocinas/metabolismo , Humanos , Células Matadoras Naturais/classificação , Receptores de IgG/metabolismo , SARS-CoV-2
8.
Diagnostics (Basel) ; 12(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36292047

RESUMO

Mesenchymal stem cells isolated from the bone marrow have a great differentiation potential, being able to produce many cell lines, including osteoblasts. Osteoblasts have an important role in bone remodeling by actively participating in the maturation and mineralization of the extracellular matrix. The aim of this study was to determine the effect of laser application on the viability and proliferation of osteoblasts. METHODS: Alveolar bone was harvested from 8 patients and placed into a culture medium to induce proliferation of mesenchymal stem cells. These were differentiated into osteoblasts in special conditions. The cells from each patient were split into two groups, one was treated using a 980 nm laser (1W output power, pulsed mode, 20 s, 50 mm distance) (laser "+") and the other one did not receive laser stimulation (laser "-"). RESULTS: Using the confocal microscope, we determined that the cells from the laser "+" group were more active when compared to the laser "-" group. The number of cells in the laser "+" group was significantly greater compared to the laser "-" group as the ImageJ-NIH software showed (p = 0.0072). CONCLUSIONS: Laser application increases the proliferation rate of osteoblasts and intensifies their cellular activity.

9.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142168

RESUMO

Cladribine (CLD) treats multiple sclerosis (MS) by selectively and transiently depleting B and T cells with a secondary long-term reconstruction of the immune system. This study provides evidence of CLD's immunomodulatory role in peripheral blood mononuclear cells (PBMCs) harvested from 40 patients with untreated relapsing-remitting MS (RRMS) exposed to CLD. We quantified cytokine secretion from PBMCs isolated by density gradient centrifugation with Ficoll−Paque using xMAP technology on a FlexMap 3D analyzer with a highly sensitive multiplex immunoassay kit. The PBMC secretory profile was evaluated with and without CLD exposure. PBMCs isolated from patients with RRMS for ≤12 months had significantly higher IL-4 but significantly lower IFN-γ and TNF-α secretion after CLD exposure. PBMCs isolated from patients with RRMS for >12 months had altered inflammatory ratios toward an anti-inflammatory profile and increased IL-4 but decreased TNF-α secretion after CLD exposure. CLD induced nonsignificant changes in IL-17 secretion in both RRMS groups. Our findings reaffirm CLD's immunomodulatory effect that induces an anti-inflammatory phenotype.


Assuntos
Cladribina , Esclerose Múltipla Recidivante-Remitente , Cladribina/farmacologia , Cladribina/uso terapêutico , Ficoll , Humanos , Interleucina-17 , Interleucina-4 , Leucócitos Mononucleares , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Fator de Necrose Tumoral alfa
10.
Biomedicines ; 10(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35884868

RESUMO

Autologous cell therapy uses patients' own cells to deliver precise and ideal treatment through a personalized medicine approach. Isolation of patients' cells from residual tissue extracted during surgery involves specific planning and lab steps. In the present manuscript, a path from isolation to in vitro research with human mesenchymal stem cells (MSCs) obtained from residual bone tissues is described as performed by a medical unit in collaboration with a research center. Ethical issues have been addressed by formulating appropriate harvesting protocols according to European regulations. Samples were collected from 19 patients; 10 of them were viable and after processing resulted in MSCs. MSCs were further differentiated in osteoblasts to investigate the biocompatibility of several 3D scaffolds produced by electrospinning and 3D printing technologies; traditional orthopedic titanium and nanostructured titanium substrates were also tested. 3D printed scaffolds proved superior compared to other substrates, enabling significantly improved response in osteoblast cells, indicating that their biomimetic structure and properties make them suitable for synthetic tissue engineering. The present research is a proof of concept that describes the process of primary stem cells isolation for in vitro research and opens avenues for the development of personalized cell platforms in the case of patients with orthopedic trauma. The demonstration model has promising perspectives in personalized medicine practices.

11.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163368

RESUMO

Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood-brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Exossomos/metabolismo , Humanos , Modelos Biológicos , Proteínas Oncogênicas/metabolismo
12.
Front Immunol ; 12: 743010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970256

RESUMO

Background: Multiple sclerosis (MS) is an incurable autoimmune disease mediated by a heterogeneous T cell population (CD3+CD161+CXCR3-CCR6+IFNγ-IL17+, CD3+CXCR3+CCR6+IFNγ+IL17+, and CD3+CXCR3+IFNγ+IL17- phenotypes) that infiltrates the central nervous system, eliciting local inflammation, demyelination and neurodegeneration. Cladribine is a lymphocyte-depleting deoxyadenosine analogue recently introduced for MS therapy as a Disease Modifying Drug (DMD). Our aim was to establish a method for the early identification and prediction of cladribine responsiveness among MS patients. Methods: An experimental model was designed to study the cytotoxic and immunomodulatory effect of cladribine. T cell subsets of naïve relapsing-remitting MS (RRMS) patients were analyzed ex vivo and in vitro comparatively to healthy controls (HC). Surviving cells were stimulated with rh-interleukin-2 for up to 14days. Cell proliferation and immunophenotype changes were analyzed after maximal (phorbol myristate acetate/ionomycin/monensin) and physiological T-cell receptor (CD3/CD28) activation, using multiparametric flow cytometry and xMAP technology. Results: Ex vivo CD161+Th17 cells were increased in RRMS patients. Ex vivo to in vitro phenotype shifts included: decreased CD3+CCR6+ and CD3+CD161+ in all subjects and increased CD3+CXCR3+ in RRMS patients only; Th17.1 showed increased proliferation vs Th17 in all subjects; CD3+IL17+ and CD3+IFNγ+IL17+ continued to proliferate till day 14, CD3+IFNγ+ only till day 7. Regarding cladribine exposure: RRMS CD3+ cells were more resistant compared to HC; treated CD3+ cells proliferated continuously for up to 14 days, while untreated cells only up to 7 days; both HC/RRMS CD3+CXCR3+ populations increased from baseline till day 14; in RRMS patients vs HC, IL17 secretion from cladribine-treated cells increased significantly, in line with the observed proliferation of CD3+IL17+ and CD3+IFNγ+IL17+ cells; in both HC/RRMS, cladribine led to a significant increase in CD3+IFNγ+ cells at day 7 only, having no further effect at day14. IFNγ and IL17 secreted in culture media decreased significantly from ex vivo to in vitro. Conclusions: CD3+ subtypes showed different responsiveness due to selectivity of cladribine action, in most patients leading to in vitro survival/proliferation of lymphocyte subsets known as pathogenic in MS. This in vitro experimental model is a promising tool for the prediction of individual responsiveness of MS patients to cladribine and other DMDs.


Assuntos
Cladribina/farmacologia , Imunossupressores/farmacologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Células Th17/efeitos dos fármacos , Adulto , Proliferação de Células/efeitos dos fármacos , Citocinas/imunologia , Feminino , Humanos , Masculino , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Células Th17/imunologia , Células Th17/patologia
13.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445097

RESUMO

The disruption of blood-brain barrier (BBB) for multiple sclerosis (MS) pathogenesis has a double effect: early on during the onset of the immune attack and later for the CNS self-sustained 'inside-out' demyelination and neurodegeneration processes. This review presents the characteristics of BBB malfunction in MS but mostly highlights current developments regarding the impairment of the neurovascular unit (NVU) and the metabolic and mitochondrial dysfunctions of the BBB's endothelial cells. The hypoxic hypothesis is largely studied and agreed upon recently in the pathologic processes in MS. Hypoxia in MS might be produced per se by the NVU malfunction or secondary to mitochondria dysfunction. We present three different but related terms that denominate the ongoing neurodegenerative process in progressive forms of MS that are indirectly related to BBB disruption: progression independent of relapses, no evidence of disease activity and smoldering demyelination or silent progression. Dimethyl fumarate (DMF), modulators of S1P receptor, cladribine and laquinimode are DMTs that are able to cross the BBB and exhibit beneficial direct effects in the CNS with very different mechanisms of action, providing hope that a combined therapy might be effective in treating MS. Detailed mechanisms of action of these DMTs are described and also illustrated in dedicated images. With increasing knowledge about the involvement of BBB in MS pathology, BBB might become a therapeutic target in MS not only to make it impenetrable against activated immune cells but also to allow molecules that have a neuroprotective effect in reaching the cell target inside the CNS.


Assuntos
Barreira Hematoencefálica/patologia , Esclerose Múltipla/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo
14.
Brain Sci ; 10(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823792

RESUMO

Brain tumours are a serious concern among both physicians and patients. The most feared brain tumour is glioblastoma (GBM) due to its heterogeneous histology, substantial invasive capacity, and rapid postsurgical recurrence. Even in cases of early management consisting of surgery, chemo-, and radiotherapy, the prognosis is still poor, with an extremely short survival period. Consequently, researchers are trying to better understand the underlying pathways involved in GBM development in order to establish a more personalised approach. The latest focus is on molecular characterisation of the tumour, including analysis of extracellular vesicles (EVs), nanostructures derived from both normal and pathological cells that have an important role in intercellular communication due to the various molecules they carry. There are two types of EV based on their biogenesis, but exosomes are of particular interest in GBM. Recent studies have demonstrated that GBM cells release numerous exosomes whose cargo provides them the capacity to facilitate tumour cell invasion and migration, to stimulate malignant transformation of previously normal cells, to increase immune tolerance towards the tumour, to induce resistance to chemotherapy, and to enhance the GBM vascular supply. As exosomes are specific to their parental cells, their isolation would allow a deeper perspective on GBM pathogenesis. A new era of molecular manipulation has emerged, and exosomes are rapidly proving their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting GBM cells. Nonetheless, further research will be required before exosomes could be used in clinical practice. This review aims to describe the structural and functional characteristics of exosomes and their involvement in GBM development, diagnosis, prognosis and treatment.

15.
Hum Immunol ; 81(5): 237-243, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32122685

RESUMO

Th17 cells, known as a highly pro-inflammatory subtype of Th cells, are involved very early in numerous aspects of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) neuropathology. A crucial event for the formation and accumulation of MS lesions is represented by the disruption of the blood brain barrier (BBB) in relapsing-remitting MS. Th17 cells also contribute to the progression of MS/EAE. These events will allow for the passage of inflammatory cells into the brain. Secondary to this, increased recruitment of neutrophils occurs, followed by increased protease activity that will continue to attract macrophages and monocytes, leading to brain inflammation with sustained myelin and axon damage. This review focuses mainly on the role of Th17 cells in penetrating the BBB and on their important effects on BBB disruption via their main secretion products, IL-17 and IL-22. We present the morphological aspects of Th17 cells that allow for intercellular contacts with BBB endothelial cells and the functional/secretory particularities of Th17 cells that allow for intercellular communications that enhance Th17 entry into the CNS. The cytokines and chemokines involved in these processes are described. In conclusion, Th17 cells can efficiently cross the BBB using pathways distinct from those used by Th1 cells, leading to BBB disruption, the activation of other inflammatory cells and neurodegeneration in MS patients.


Assuntos
Barreira Hematoencefálica/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Movimento Celular , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/metabolismo , Humanos , Esclerose Múltipla/patologia , Células Th1/imunologia , Células Th1/metabolismo , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...