Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278820

RESUMO

SARS-CoV-2 omicron subvariants BA.1 and BA.2 became dominant in many countries in early 2022. These subvariants are now being displaced by BA.4 and BA.5. While natural infection with BA.1/BA.2 provides some protection against BA.4/BA.5 infection, the duration of this protection remains unknown. We used the national Portuguese COVID-19 registry to investigate the waning of protective immunity conferred by prior BA.1/BA.2 infection towards BA.5. We divided the individuals infected during the period of BA.1/BA.2 dominance (>90% of sample isolates) in successive 15-day intervals and determined the risk of subsequent infection with BA.5 over a fixed period. Compared with uninfected people, one previous infection conferred substantial protection against BA.5 re-infection at 3 months (RR=0.12; 95% CI: 0.11-0.12). However, although still significant, the protection was reduced by two-fold at 5 months post-infection (RR=0.24; 0.23-0.24). These results should be interpreted in the context of vaccine breakthrough infections, as the vaccination coverage in the individuals included in the analyses is >98% since the end of 2021. This waning of protection following BA.1/BA.2 infection highlights the need to assess the stability and durability of immune protection induced with the adapted vaccines (based on BA.1) over time.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277602

RESUMO

The SARS-CoV-2 omicron BA.5 subvariant is progressively displacing earlier subvariants, BA.1 and BA.2, in many countries. One possible explanation is the ability of BA.5 to evade immune responses elicited by prior BA.1 and BA.2 infections. The impact of BA.1 infection on the risk of reinfection with BA.5 is a critical issue because adapted vaccines under current clinical development are based on BA.1. We used the national Portuguese COVID-19 registry to analyze the risk of BA.5 infection in individuals without a documented infection or previously infected during periods of distinct variants predominance (Wuhan-Hu-1, alpha, delta, BA.1/BA.2). National predominance periods were established according to the national SARS-CoV-2 genetic surveillance data (when one variant represented >90% of the sample isolates). We found that prior SARS-CoV-2 infection reduced the risk for BA.5 infection. The protection effectiveness, related to the uninfected group, for a first infection with Wuhan-Hu-1 was 52.9% (95% CI, 51.9 - 53.9%), for Alpha 54.9% (51.2 - 58.3%), for Delta 62.3% (61.4 - 63.3%), and for BA.1/BA.2 80.0% (79.7 - 80.2%). The results ought to be interpreted in the context of breakthrough infections within a population with a very high vaccine coverage (>98% of the study population completed the primary vaccination series). In conclusion, infection with BA.1/BA.2 reduces the risk for breakthrough infections with BA.5 in a highly vaccinated population. This finding is critical to appraise the current epidemiological situation and the development of adapted vaccines.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260905

RESUMO

Shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in the feces and urine of infected patients and subsequent presence in wastewater has produced interest on the use of this matrix for sentinel surveillance at a community level and as a complementary approach to syndromic surveillance. With this work, we set the foundations for wastewater-based epidemiology (WBE) in Portugal by monitoring the trends of SARS-CoV-2 RNA circulation in the community, on a nationwide perspective during different epidemiological phases of the pandemic. The Charite assays (E_Sarbecco, RdRP, and N_Sarbecco) were applied to monitor, over 32-weeks (April to December 2020), the dynamics of SARS-CoV-2 RNA at the inlet of five wastewater treatment plants (WWTP), which together serve more than two million people in Portugal. Raw wastewater from three COVID-19 reference hospitals was also analyzed during this period. In total, more than 600 samples were tested. Sampling started late April 2020, during lockdown, and, for the first weeks, detection of SARS-CoV-2 RNA was sporadic, with concentrations varying from 103 to 105 genome copies per liter (GC/L). Prevalence of SARS-CoV-2 RNA increased steeply by the end of May into late June, mainly in Lisboa e Vale do Tejo region (LVT), during the reopening phase. After the summer, with the reopening of schools in mid-September and return to partial face-to-face work, a pronounced increase of SARS-CoV-2 RNA in wastewater was detected. In the LVT area, SARS-CoV-2 RNA load agreed with reported trends in hotspots of infection. Synchrony between trends of SARS-CoV-2 RNA in raw wastewater and daily new COVID-19 cases highlights the value of WBE as a surveillance tool for this virus, particularly after the phasing out of the epidemiological curve and when hotspots of disease re-emerge in the population which might be difficult to spot based solely on syndromic surveillance and contact tracing.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253164

RESUMO

2.Recently, much attention has been paid to the COVID-19 pandemic, yet bacterial resistance to antibiotics remains a serious and unsolved public health problem, which kills thousands of people annually, being an insidious and silent pandemic. In this study, we explored the idea of confinement and the tightening of the hygiene measures to contain the spreading of coronavirus, to simulate the effect that it has on lowering the spreading of pathogenic bacteria in a human network, and on the need to use antibiotics. For that, we used computational biology to generate simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...