Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Appl Opt Mater ; 2(6): 980-990, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38962566

RESUMO

Passive radiative cooling technology has the potential to revolutionize the way of cooling buildings and devices, while also helping to reduce the carbon footprint and energy consumption. Pioneer works involving anodic aluminum oxide (AAO) nanostructures showed controversial results. In this work, we clarify how the morphological properties and chemical structure of AAO-Al samples affect their optical properties and their cooling performance. Changes in thickness, interpore distance, and porosity of the alumina layer, as well as the used counterions, significantly affect the cooling ability of the AAO-Al structure. We measure a maximum temperature reduction, ΔT, of 8.0 °C under direct sunlight on a summer day in Spain, coinciding with a calculated peak cooling power, P cool, of 175 W/m2, using an AAO-Al sample anodized in sulfuric acid, with 12 µm of AAO thickness and 10% of porosity. These results represent a significant improvement over previous studies, demonstrating the potential of AAO nanostructures to be used in thermal management applications.

2.
J Phys Chem Lett ; 15(5): 1420-1427, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38290522

RESUMO

The characterization of thin films containing nanopores with diameters exceeding 50 nm poses significant challenges, especially when deploying sorption-based techniques. Conventional volumetric physisorption or mercury intrusion methods have limited applicability in thin films due to constraints in sample preparation and nondestructive testing. In this context, ellipsometric porosimetry represents a viable alternative, leveraging its optical sensitivity to thin films. With existing setups relying on the capillary condensation of volatile compounds such as water, applicability is typically restricted to pore dimensions <50 nm. In this study, we introduce two high-molar-mass hydrocarbon adsorptives, namely ethylbenzene and n-nonane. These adsorptives exhibit substantial potential in improving the accuracy of physisorption measurements beyond mesoporosity (i.e., >50 nm). Specifically, with n-nonane, applicability is extended up to 80 nm pores. Our measurement guidelines propose a nondestructive, expeditious (<60 min), low-pressure (<0.03 bar) approach to investigate nanoporous thin films with potential adaptability to diverse structural architectures.

3.
Cell Mol Life Sci ; 80(8): 238, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535170

RESUMO

Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Humanos , Animais , Camundongos , Doença de Huntington/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Corpo Estriado/metabolismo , Diferenciação Celular , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
4.
Nanomaterials (Basel) ; 12(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36558282

RESUMO

Recently, polymers have been attracted great attention because of their thermoelectric materials' excellent mechanical properties, specifically their cost-effectiveness and scalability at the industrial level. In this study, the electropolymerization conditions (applied potential and deposition time) of PEDOT films were investigated to improve their thermoelectric properties. The morphology and Raman spectroscopy of the PEDOT films were analyzed according to their applied potential and deposition time. The best thermoelectric properties were found in films grown at 1.3 V for 10 min, with an electrical conductivity of 158 ± 8 S/cm, a Seebeck coefficient of 33 ± 1 µV/K, and a power factor of 17 ± 2 µW/K·m2. This power factor value is three times higher than the value reported in the literature for electropolymerized PEDOT films in acetonitrile using lithium perchlorate as a counter-ion. The thermal conductivity was found to be (1.3 ± 0.3) × 10-1 W/m·K. The highest figure of merit obtained at room temperature was (3.9 ± 1.0) × 10-2 using lithium perchlorate as a counter-ion. In addition, three-dimensional (3D) PEDOT nanonetworks were electropolymerized inside 3D anodic aluminum oxide (3D AAO), obtaining lower values in their thermoelectric properties.

5.
Brain ; 145(5): 1584-1597, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35262656

RESUMO

There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Encéfalo/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia
6.
Nanomaterials (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616063

RESUMO

The 1D nanowire arrays and 3D nanowire networks of topological insulators and metals have been fabricated by template-assisted deposition of Bi2Te3 and Ni inside anodic aluminum oxide (AAO) templates, respectively. Despite the different origins of the plasmon capabilities of the two materials, the results indicate that the optical response is determined by plasmon resonances, whose position depends on the nanowire interactions and material properties. Due to the thermoelectric properties of Bi2Te3 nanowires, these plasmon resonances could be used to develop new ways of enhancing thermal gradients and their associated thermoelectric power.

7.
ACS Appl Energy Mater ; 4(12): 13556-13566, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35647490

RESUMO

3D interconnected nanowire scaffoldings are shown to increase the thermoelectric efficiency in comparison to similar diameter 1D nanowires and films grown under similar electrodeposition conditions. Bi2Te3 3D nanonetworks offer a reduction in thermal conductivity (κT) while preserving the high electrical conductivity of the films. The reduction in κT is modeled using the hydrodynamic heat transport equation, and it can be understood as a heat viscosity effect due to the 3D nanostructuration. In addition, the Seebeck coefficient is twice that of nanowires and films, and up to 50% higher than in a single crystal. This increase is interpreted as a nonequilibrium effect that the geometry of the structure induces on the distribution function of the phonons, producing an enhanced phonon drag. These thermoelectric metamaterials have higher performance and are fabricated with large areas by a cost-effective method, which makes them suitable for up-scale production.

8.
Front Cell Neurosci ; 14: 250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848630

RESUMO

Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.

9.
Beilstein J Nanotechnol ; 11: 798-806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509493

RESUMO

Structural colours have received a lot of attention regarding the reproduction of the vivid colours found in nature. In this study, metal-anodic aluminium oxide (AAO)-Al nanostructures were deposited using a two-step anodization and sputtering process to produce self-ordered anodic aluminium oxide films and a metal layer (8 nm Cr and 25, 17.5 and 10 nm of Au), respectively. AAO films of different thickness were anodized and the Yxy values (Y is the luminance value, and x and y are the chromaticity values) were obtained via reflectance measurements. An empirical model based on the thickness and porosity of the nanostructures was determined, which describes a gamut of colours. The proposed mathematical model can be applied in different fields, such as wavelength absorbers, RGB (red, green, blue) display devices, as well as chemical or optical sensors.

10.
Sci Technol Adv Mater ; 20(1): 1022-1030, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31723369

RESUMO

Bi2Te3 nanowires with diameters ranging from 25 to 270 nm, ultra-high aspect ratio, and uniform growth front were fabricated by electrodeposition, pulsing between zero current density during the off time and constant potential during the on time (pulsed-current-voltage method, p-IV). The use of zero current density during the off time is to ensure no electrodeposition is carried out and the system is totally relaxed. By this procedure, stoichiometric nanowires oriented perpendicular to the c-axis is obtained for the different diameters of porous alumina templates. In addition, the samples show a uniform growth front with ultra-high aspect ratio single crystal nanowires. The high degree of crystallinity was verified by transmission electron backscatter diffraction. This characterization revealed that the nanowires present both large single crystalline areas and areas with alternating twin configurations.

11.
Front Chem ; 7: 516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440496

RESUMO

Nanostructuration is an intensive field of research due to the appearance of interesting properties at the nanoscale. For instance, in thermoelectricity the most outstanding improvements obtained lately are related to phenomena that appear as a result of nano-engineering different materials. The thermoelectric effect is the direct conversion from temperature gradients into electricity and vice versa. When going to low dimensions, for example in the particular case of thermoelectric nanowires, the transport properties of phonons are modified with respect to those found in bulk leading to a higher thermoelectric figure of merit z. In more detail, this review tries to compile some of the landmarks in the electrodeposition of Bi2Te3-based nanowires. We will focus on the achievements using different templates, electrolytes and deposition modes. We will also summarize the measurements performed in those nanowires and the main conclusions that can be extracted from the published works. Finally, an update of nanowire-based thermoelectric generators is also included.

12.
RSC Adv ; 9(44): 25762-25775, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35530084

RESUMO

The electrodeposition of stainless steel-like FeCrNi alloys for miniaturised devices is appealing as it would allow combining excellent material properties (e.g. corrosion resistance, hardness, biocompatibility) at low-cost. However, conventional baths often contain hazardous hexavalent chromium. Cr-based alloys electrodeposited from environmentally friendly trivalent chromium electrolytes are crucial for industrial application for facilitating the transition towards sustainable and ecological production and processing. Nevertheless, this process has not been comprehensively studied or understood in depth: especially the role of organic agents (common additives for improving Cr(iii)-based plating; e.g. glycine) in terms of material properties of the electrodeposits. The aim of this work was to investigate the electrodeposition of FeCrNi coatings from a 'green' Cr(iii)-glycine electrolyte. Novel information was attained by analysing films developed under various conditions and characterising them using a combination of advanced techniques. The evolution of microstructure (from amorphous to nanocrystalline) in correlation with film composition (i.e. metals ratio and presence of impurities) and elemental 3D spatial distribution was achieved for coatings produced from different anode materials and thermal post-treatment. The influence of Cr(iii) and glycine in terms of coating atomic contents (i.e. Fe-Cr-Ni-O-C-N-H) was evaluated for films in which both the applied current density and electrolyte composition were varied. These results, together with a thorough analysis on metals speciation/complexation allowed us to propose various Cr(iii)-based electroreduction mechanisms, and to observe, upon annealing, segregation and distribution of impurities, as well as of oxides and metals with respect to microstructure variation, providing an explanation for the amorphisation process.

13.
Langmuir ; 33(43): 12404-12418, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28927272

RESUMO

Titanium dioxide (TiO2) nanoparticles were synthesized by nonaqueous sol-gel route using titanium tetrachloride and benzyl alcohol as the solvent. The obtained 4 nm-sized anatase nanocrystals were readily dispersible in various polar solvents allowing for simple preparation of colloidal dispersions in water, isopropyl alcohol, dimethyl sulfoxide, and ethanol. Results showed that dispersed nanoparticles have acidic properties and exhibit positive zeta-potential which is suitable for their deposition by cathodic electrophoresis. Aluminum substrates were anodized in phosphoric acid in order to produce porous anodic oxide layers with pores ranging from 160 to 320 nm. The resulting nanopores were then filled with TiO2 nanoparticles by electrophoretic deposition. The influence of the solvent, the electric field, and the morphological characteristics of the alumina layer (i.e., barrier layer and porosity) were studied.

14.
Nanotechnology ; 27(7): 075706, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26783144

RESUMO

We unambiguously show that the signature of Te-rich bismuth telluride is the appearance of three new peaks in the Raman spectra of Bi2Te3, located at 88, 117 and 137 cm(-1). For this purpose, we have grown stoichiometric Bi2Te3 nanowires as well as Te-rich nanowires. The absence of these peaks in stoichiometric nanowires, even in those with the smallest diameter, shows that they are not related to confinement effects or the lack of inversion symmetry, as stated in the literature, but to the existence of Te clusters. These Te clusters have been found in non-stoichiometric samples by high resolution electron microscopy, while they are absent in stoichiometric samples. The Raman spectra of the latter corresponds to the one for bulk Bi2Te3. The intensity of these Raman peaks are clearly correlated to the Te content. In order to ensure statistically meaningful results, we have investigated several regions from every sample.

15.
Sci Rep ; 6: 19014, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26751282

RESUMO

Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

16.
Sci Rep ; 6: 19129, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26776726

RESUMO

Highly oriented [1 1 0] Bi2Te3 films were obtained by pulsed electrodeposition. The structure, composition, and morphology of these films were characterized. The thermoelectric figure of merit (zT), both parallel and perpendicular to the substrate surface, were determined by measuring the Seebeck coefficient, electrical conductivity, and thermal conductivity in each direction. At 300 K, the in-plane and out-of-plane figure of merits of these Bi2Te3 films were (5.6 ± 1.2)·10(-2) and (10.4 ± 2.6)·10(-2), respectively.

17.
Pediatr. catalan ; 75(1): 19-20, ene.-mar. 2015. ilus
Artigo em Catalão | IBECS | ID: ibc-138834

RESUMO

Introducció. La malaltia TIBOLA (Tick-Borne Lymphadenopathy) va ser descrita inicialment a l’est d’Europa i des de fa pocs anys se n’estan comunicant més casos a la nostra zona. S’ha relacionat amb la Rickettsia slovaca, transmesa per la picada de la paparra Dermacentor marginatus, habitual de la península Ibèrica i que s’ha trobat en senglars. Cas clínic. Presentem el cas d’un nen de 10 anys a qui es va extreure una d’aquestes paparres, i que presentava simptomatologia compatible amb aquesta malaltia i serologia positiva a Rickettsia conorii. Comentaris. Hem de sospitar el diagnòstic davant la presència d’una escara necròtica al cuir pilós amb adenopaties regionals doloroses. La serologia a altres rickèttsies pot ser positiva per reacció creuada. Les tècniques moleculars com la PCR en sang i en mostra extreta de la lesió d’inoculació ens poden ajudar a fer el diagnòstic etiològic (AU)


Introducción. La enfermedad TIBOLA (Tick-Borne Lymphadenopathy) fue descrita inicialmente en el este de Europa y desde hace pocos años se están comunicando más casos en nuestra zona. Se ha relacionado con la Rickettsia slovaca, transmitida por la picadura de la garrapata Dermacentor marginatus, habitual de la península Ibérica y que se encuentra en jabalíes. Caso clínico. Presentamos el caso de un niño de 10 años a quien se extrajo una de estas garrapatas, y que presentaba síntomas compatibles con esta enfermedad y serología positiva a Rickettsia conorii. Comentarios. Tenemos que sospechar este diagnóstico ante la presencia de una escara necrótica en cuero cabelludo y adenopatías regionales dolorosas. La serología a otras rickettsias puede ser positiva por reacción cruzada. Las técnicas moleculares como la PCR en sangre y en muestra de la lesión de inoculación nos pueden ayudar al diagnóstico etiológico (AU)


Introduction. TIBOLA (Tick-Borne LymphAdenopathy) was first reported in Eastern Europe and new cases have been recently reported in our country. This illness is caused by Rickettsia slovaca, which is transmitted by the Dermacentor marginatus tick bite; this tick is widely found among boars in the Iberian Peninsula. Case Report. A 10-year-old child with history of having a tick attached to the scalp, presented with symptoms suggestive of TIBOLA; serology was positive for Rickettsia conorii. Discussion. The diagnosis of TIBOLA should be suspected in the presence of a necrotic eschar at the inoculation site in the scalp associated with painful regional lymphadenopathies. Serology shows cross-reaction with other rikettsiae. Molecular techniques such as PCR in serum or inoculation lesion samples can also aid in the diagnosis (AU)


Assuntos
Criança , Humanos , Masculino , Doenças Linfáticas/diagnóstico , Doenças Transmitidas por Carrapatos/diagnóstico , Rickettsia/patogenicidade , Infecções por Rickettsia/complicações
18.
Int J Environ Res Public Health ; 11(7): 7261-74, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25032741

RESUMO

Traditionally, nicotine from second hand smoke (SHS), active or passive, has been considered the most prevalent substance of abuse used during pregnancy in industrialized countries. Exposure to environmental tobacco smoke (ETS) is associated with a variety of health effects, including lung cancer and cardiovascular diseases. Tobacco is also a major burden to people who do not smoke. As developing individuals, newborns and children are particularly vulnerable to the negative effects of SHS. In particular, prenatal ETS has adverse consequences during the entire childhood causing an increased risk of abortion, low birth weight, prematurity and/or nicotine withdrawal syndrome. Over the last years, a decreasing trend in smoking habits during pregnancy has occurred, along with the implementation of laws requiring smoke free public and working places. The decrease in the incidence of prenatal tobacco exposure has usually been assessed using maternal questionnaires. In order to diminish bias in self-reporting, objective biomarkers have been developed to evaluate this exposure. The measurement of nicotine and its main metabolite, cotinine, in non-conventional matrices such as cord blood, breast milk, hair or meconium can be used as a non-invasive measurement of prenatal SMS in newborns. The aim of this review is to highlight the prevalence of ETS (prenatal and postnatal) using biomarkers in non-conventional matrices before and after the implementation of smoke free policies and health effects related to this exposure during foetal and/or postnatal life.


Assuntos
Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Poluição por Fumaça de Tabaco , Biomarcadores/metabolismo , Feminino , Humanos , Exposição Materna/prevenção & controle , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Política Pública , Poluição por Fumaça de Tabaco/legislação & jurisprudência
19.
Nanotechnology ; 24(39): 395701, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24008394

RESUMO

The tip apex dimensions and geometry of the conductive probe remain the major limitation to the resolution of Kelvin probe force microscopy (KPFM). One of the possible strategies to improve the spatial resolution of surface potential images consists in the development of thinner and more durable conductive tips. In an effort to improve the lateral resolution of topography and surface potential maps, we have evaluated high aspect ratio conductive tips created by depositing gold nanoparticles on standard silicon tips. Besides the already known general topographic resolution enhancement offered by these modified tips, an improvement of surface potential lateral resolution and signal-to-noise ratio is reported here for a variety of samples as compared to other regular conductive probes. We have also observed that the modified conductive tips have a significant auto-regeneration capability, which stems from a certain level of mobility of the nanoparticle coating. This property makes the modified tips highly resistant to degradation during scanning, thus increasing their durability. As demonstrated by the heterogeneous set of structures measured in the present study performed in air, the nanoparticle coated tips are suitable for KPFM analysis. In particular, surface potential difference determination on graphene deposited on silicon, gold sputtered on a salt surface, large and mildly rough areas of ZnO films and small DNA molecules on insulating mica have been achieved with enhanced resolution.

20.
ACS Appl Mater Interfaces ; 5(1): 72-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23215033

RESUMO

Ordered anodic aluminum oxide (AAO) templates with pores <15 nm in diameter and an aspect ratio (length-to-diameter ratio) above 3 × 10(3) have been fabricated using a nonlithographic approach; specifically, by anodizing aluminum in an ethylene-glycol-containing sulfuric acid electrolyte. The pores are the smallest in diameter reported for a self-ordered AAO without pore aspect-ratio limitations and good ordering, which opens up the possibility of obtaining nanowire arrays in the quantum confinement regime that is of interest for efficient thermoelectric generators. The effect of the ethylene glycol addition on both the pore diameter and the ordering is evaluated and discussed. Moreover, 15-nm-diameter Bi(2)Te(3) and poly(3-hexyl thiophene) (P3HT) nanowires have been prepared using these AAO templates. As known, Bi(2)Te(3) is currently the most efficient thermoelectric bulk material for room-temperature operations and, according with theory, its Seebeck coefficient should be increased when it is confined to nanowires with diameters close to 10 nm. On the other hand, P3HT is one of the main candidates for integrating organic photovoltaic and thermoelectric devices, and its properties are also proposed to increase when it is confined to nanoscale structures, mainly due to molecular orientation effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...