Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(9): 3717-3725, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37655758

RESUMO

Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues, such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular microenvironment of the target tissue. Visualization and analysis of potential 3D porous scaffolds as well as the associated cell growth and proliferation characteristics present additional problems. This is particularly challenging for opaque scaffolds using standard optical imaging techniques. Here, we use graphene foam (GF) as a 3D porous biocompatible substrate, which is scalable, reproducible, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticles to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a 3D environment. Most importantly, the staining protocol allows for direct imaging of cell growth and proliferation on opaque scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches, which is not possible with standard fluorescence and electron microscopy techniques.


Assuntos
Grafite , Nanopartículas Metálicas , Ouro , Engenharia Tecidual , Técnicas de Cultura de Células em Três Dimensões , Imagem Óptica
2.
Microsyst Nanoeng ; 9: 51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152863

RESUMO

Surface acoustic wave (SAW) devices are a subclass of micro-electromechanical systems (MEMS) that generate an acoustic emission when electrically stimulated. These transducers also work as detectors, converting surface strain into readable electrical signals. Physical properties of the generated SAW are material dependent and influenced by external factors like temperature. By monitoring temperature-dependent scattering parameters a SAW device can function as a thermometer to elucidate substrate temperature. Traditional fabrication of SAW sensors requires labor- and cost- intensive subtractive processes that produce large volumes of hazardous waste. This study utilizes an innovative aerosol jet printer to directly write consistent, high-resolution, silver comb electrodes onto a Y-cut LiNbO3 substrate. The printed, two-port, 20 MHz SAW sensor exhibited excellent linearity and repeatability while being verified as a thermometer from 25 to 200 ∘C. Sensitivities of the printed SAW thermometer are - 96.9 × 1 0 - 6 ∘ C-1 and - 92.0 × 1 0 - 6 ∘ C-1 when operating in pulse-echo mode and pulse-receiver mode, respectively. These results highlight a repeatable path to the additive fabrication of compact high-frequency SAW thermometers.

3.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993602

RESUMO

Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular environment of the target tissue, while allowing for 3D tomography of porous scaffolds as well as their cell growth and proliferation characterization. This is particularly challenging for opaque scaffolds. Here we use graphene foam (GF) as a 3D porous biocompatible substrate which is scalable, reproduceable, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticle to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a three-dimensional environment. Most importantly, our staining protocols allows for direct imaging of cell growth and proliferation on opaque GF scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches which is not possible with standard fluorescence and electron microscopy techniques.

4.
Nanoscale ; 15(14): 6596-6606, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36916135

RESUMO

Thermoelectric generators (TEGs) convert temperature differences into electrical power and are attractive among energy harvesting devices due to their autonomous and silent operation. While thermoelectric materials have undergone substantial improvements in material properties, a reliable and cost-effective fabrication method suitable for microgravity and space applications remains a challenge, particularly as commercial space flight and extended crewed space missions increase in frequency. This paper demonstrates the use of plasma-jet printing (PJP), a gravity-independent, electromagnetic field-assisted printing technology, to deposit colloidal thermoelectric nanoflakes with engineered nanopores onto flexible substrates at room temperature. We observe substantial improvements in material adhesion and flexibility with less than 2% and 11% variation in performance after 10 000 bending cycles over 25 mm and 8 mm radii of curvature, respectively, as compared to previously reported TE films. Our printed films demonstrate electrical conductivity of 2.5 × 103 S m-1 and a power factor of 70 µW m-1 K-2 at room temperature. To our knowledge, these are the first reported values of plasma-jet printed thermoelectric nanomaterial films. This advancement in plasma jet printing significantly promotes the development of nanoengineered 2D and layered materials not only for energy harvesting but also for the development of large-scale flexible electronics and sensors for both space and commercial applications.

5.
Opt Express ; 30(16): 28470-28478, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299041

RESUMO

We demonstrate a real-time, reusable, and reversible integrated optical sensor for temperature monitoring within harsh environments. The sensor architecture combines the phase change property of chalcogenide glasses (ChG) with the high-density integration advantages of high index silicon waveguides. To demonstrate sensor feasibility, ChG composition Ge40S60, which is characterized by a sharp phase transition from amorphous to crystalline phase around 415 °C, is deposited over a 50 µm section of a single mode optical waveguide. The phase transition changes the behavior of Ge40S60 from a low loss to high loss material, thus significantly affecting the hybrid waveguide loss around the phase transition temperature. A transmission power drop of over 40dB in the crystalline phase compared to the amorphous phase is experimentally measured. Moreover, we recover the amorphous phase through the application of an electrical pulse, thus showing the reversible nature of our compact temperature sensor. Through integrating multiple compositions of ChG with well-defined phases transition temperatures over a silicon waveguide array, it is possible to determine, in real-time, the temperature evolution within a harsh environment, such as within a nuclear reactor cladding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...