Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 208(0): 227-242, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29808205

RESUMO

We looked for the active hydrogen species in a highly dispersed and very homogeneous 5 wt% Pt/C industrial catalyst (Pt particle mean diameter of 2.0 ± 0.5 nm) for hydrogenation reactions, by coupling H2 adsorption measurements with Inelastic Neutron Scattering (INS). Taking advantage of the enormous progress undergone by INS instruments, we succeeded in collecting INS spectra of unprecedented quality that allowed us to: (1) demonstrate that the Pt nanoparticles are mainly located at the regular edges of the sp2 graphitic domains on the activated carbon; (2) validate that most of the H2 physisorbed on the carbon is side-on adsorbed; (3) detect for the first time H2 molecules adsorbed on hydride-covered Pt nanoparticles; (4) observe Pt-hydrides (on the Pt/C catalyst with the lowest Pt loading among those investigated by INS so far) and (5) provide evidence for the occurrence of spillover of atomic hydrogen from the Pt surface to unsaturated reactive sites located at the irregular borders of the sp2 domains on the activated carbon.

2.
Phys Chem Chem Phys ; 19(40): 27489-27507, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28975938

RESUMO

An X-ray absorption spectroscopy study of the UiO-67 Pt functionalized metal organic frameworks (MOFs) demonstrates that under appropriate conditions, at least two types of catalytically active sites can be formed in the cavities of the MOF: isolated Pt-complexes and Pt nanoparticles (Pt-NPs). Both pre-made linker synthesis (PMLS) and post-synthesis functionalization (PSF) methods were adopted. XAS was used to monitor the temperature-dependent behaviour of UiO-67-Pt while heating from RT to 623 K, in different gas feeds (pure He, 3% H2/He and 10% H2/He). We collected static in situ Pt LIII XANES and EXAFS spectra at room temperature (RT) before and after the thermal treatment, as well as spectra acquired under operando conditions upon heating. Under 10% H2/He thermal treatment, we unambiguously detected Pt-NP formation which has been followed by a parametric EXAFS analysis of the data collected during temperature programmed H2-reduction (TPR), using the Einstein model to predict the temperature dependence of the Debye-Waller factors. Conversely, in pure He flow, the only significant change observed during TPR is the progressive decrease of the Pt-Cl single scattering contribution, leading to the conclusion that the Pt grafted to the bpydc-linkers remains naked. Advanced EXAFS/TEM analysis allowed us to quantify the fraction of Pt in the form of Pt-NPs, values that have been quantitatively confirmed by linear combination analysis of the XANES spectra. In situ XANES/EXAFS study was supported by ex situ XRPD and BET analyses, confirming the framework stability and testifying a loss of the internal volume after TPR due to the formation of Pt-NPs insides the MOF pores, more relevant in the sample where smaller Pt-NPs were formed.

3.
Faraday Discuss ; 201: 265-286, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28621776

RESUMO

The exceptional thermal and chemical stability of the UiO-66, -67 and -68 classes of isostructural MOFs [J. Am. Chem. Soc., 2008, 130, 13850] makes them ideal materials for functionalization purposes aimed at introducing active centres for potential application in heterogeneous catalysis. We previously demonstrated that a small fraction (up to 10%) of the linkers in the UiO-67 MOF can be replaced by bipyridine-dicarboxylate (bpydc) moieties exhibiting metal-chelating ability and enabling the grafting of Pt(ii) and Pt(iv) ions in the MOF framework [Chem. Mater., 2015, 27, 1042] upon interaction with PtCl2 or PtCl4 precursors. Herein we extend this functionalization approach in two directions. First, we show that by controlling the activation of the UiO-67-Pt we can move from a material hosting isolated Pt(ii) sites anchored to the MOF framework with Pt(ii) exhibiting two coordination vacancies (potentially interesting for C-H bond activation) to the formation of very small Pt nanoparticles hosted inside the MOF cavities (potentially interesting for hydrogenation reactions). The second direction consists of the extension of the approach to the insertion of Cu(ii), obtained via interaction with CuCl2, and exhibiting interesting redox properties. All materials have been characterized by in situ X-ray absorption spectroscopy at the Pt L3- and Cu K-edges.

4.
Phys Chem Chem Phys ; 15(32): 13400-8, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23860540

RESUMO

Two gold based catalysts supported on ceria prepared by different methods (urea gelation coprecipitation, UGC, and coprecipitation, CP) have been synthesized and tested in the WGS reaction, showing quite different catalytic behaviors. Interestingly, the two catalysts have the same gold loading (3 wt% Au was inserted by deposition-precipitation) and the FTIR spectroscopy of the adsorbed CO revealed the same amount of gold exposed sites. With the aim to elucidate how the preparation method affects the properties of the support, a morphological, structural and textural characterization has been performed by HRTEM, XRD, BET and Raman analyses, as well as FTIR spectroscopy to probe both the Au and the support exposed sites. It was found that the UGC method gave rise to an enhancement of the defectivity of ceria and to an increase of the reactivity under reductive treatment. Further FTIR measurements of adsorbed acetone demonstrated the presence of two kinds of Ce(4+) sites with different coordination, (CUS) Ce(4+) A and (CUS) Ce(4+) B, on the UGC sample. Such sites can influence the catalytic activity, possibly favoring the water dissociation, making ceria prepared by UGC a better support for Au catalysts than the CP-prepared one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...