Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5202, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898004

RESUMO

Acoustic vibrations of matter convey fundamental viscoelastic information that can be optically retrieved by hyperfine spectral analysis of the inelastic Brillouin scattered light. Increasing evidence of the central role of the viscoelastic properties in biological processes has stimulated the rise of non-contact Brillouin microscopy, yet this method faces challenges in turbid samples due to overwhelming elastic background light. Here, we introduce a common-path Birefringence-Induced Phase Delay (BIPD) filter to disentangle the polarization states of the Brillouin and Rayleigh signals, enabling the rejection of the background light using a polarizer. We demonstrate a 65 dB extinction ratio in a single optical pass collecting Brillouin spectra in extremely scattering environments and across highly reflective interfaces. We further employ the BIPD filter to image bone tissues from a mouse model of osteopetrosis, highlighting altered biomechanical properties compared to the healthy control. Results herald new opportunities in mechanobiology where turbid biological samples remain poorly characterized.


Assuntos
Elasticidade , Animais , Birrefringência , Camundongos , Viscosidade , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Luz , Espalhamento de Radiação
2.
J Chem Phys ; 159(8)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37615395

RESUMO

Nonlinear spectroscopy with quantum entangled photons is an emerging field of research that holds the promise to achieve superior signal-to-noise ratio and effectively isolate many-body interactions. Photon sources used for this purpose, however, lack the frequency tunability and spectral bandwidth demanded by contemporary molecular materials. Here, we present design strategies for efficient spontaneous parametric downconversion to generate biphoton states with adequate spectral bandwidth and at visible wavelengths. Importantly, we demonstrate, by suitable design of the nonlinear optical interaction, the scope to engineer the degree of spectral correlations between the photons of the pair. We also present an experimental methodology to effectively characterize such spectral correlations. Importantly, we believe that such a characterization tool can be effectively adapted as a spectroscopy platform to optically probe system-bath interactions in materials.

3.
ACS Photonics ; 9(11): 3563-3572, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36411818

RESUMO

Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applications. However, measuring the whole momentum space (k-space) with sufficient spectral resolution using standard spectroscopic techniques is challenging, requiring long and alignment-sensitive scans. Here, we introduce a k-space hyperspectral microscope, which uses a common-path birefringent interferometer to image photoluminescent organic microcavities, obtaining an angle- and wavelength-resolved view of the samples in only one measurement. The exceptional combination of angular and spectral resolution of our technique allows us to reconstruct a three-dimensional (3D) map of the cavity dispersion in the energy-momentum space, revealing the polarization-dependent behavior of the resonant cavity modes. Furthermore, we apply our technique for the characterization of a dielectric nanodisk metasurface, evidencing the angular and spectral behavior of its anapole mode. This approach is able to provide a complete optical characterization for materials and devices with nontrivial angle-/wavelength-dependent properties, fundamental for future developments in the fields of topological photonics and optical metamaterials.

4.
Phys Chem Chem Phys ; 24(36): 21750-21758, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36094295

RESUMO

Thionated nucleobases are obtained by replacing oxygen with sulphur atoms in the canonical nucleobases. They absorb light efficiently in the near-ultraviolet, populating singlet states which undergo intersystem crossing to the triplet manifold on an ultrashort time scale with a high quantum yield. Nonetheless there are still important open questions about the primary mechanisms responsible for this ultrafast transition. Here we track both the electronic and the vibrational ultrafast excited-state dynamics towards the triplet state for solvated 4-thiothymidine (4TT) and 4-thiouracil (4TU) with sub-30 fs broadband transient absorption spectroscopy in the ultraviolet. A global and target analysis allows us to simultaneously resolve the contributions of the different electronically and vibrationally excited states to the whole data set. Our experimental results, combined with state-of-the-art quantum mechanics/molecular mechanics simulations and Damped Oscillation Associated Spectra (DOAS) and target analysis, support that the relaxation to the triplet state is mediated by conical intersections promoted by vibrational coherences through the population of an intermediate singlet state. In addition, the analysis of the coherent vibrational dynamics reveals that, despite sharing the same relaxation mechanism and similar chemical structures, 4TT and 4TU exhibit rather different geometrical deformations, characterized by the conservation of planarity in 4TU and its partial rupture in 4TT.


Assuntos
Simulação de Dinâmica Molecular , Vibração , Oxigênio , Enxofre
5.
Nano Lett ; 22(7): 2748-2754, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343692

RESUMO

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature. Here, we show both theoretically and experimentally that this correspondence does not hold under a nonperturbative excitation regime. Our results indicate that the main mechanism responsible for the breaking of the correspondence between electronic and optical dynamics is universal in plasmonics, being dominated by the nonlinear smearing of the Fermi-Dirac occupation probability at high hot-electron temperatures.

6.
Molecules ; 27(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208987

RESUMO

Understanding the primary steps following UV photoexcitation in sulphur-substituted DNA bases (thiobases) is fundamental for developing new phototherapeutic drugs. However, the investigation of the excited-state dynamics in sub-100 fs time scales has been elusive until now due to technical challenges. Here, we track the ultrafast decay mechanisms that lead to the electron trapping in the triplet manifold for 6-thioguanine in an aqueous solution, using broadband transient absorption spectroscopy with a sub-20 fs temporal resolution. We obtain experimental evidence of the fast internal conversion from the S2(ππ*) to the S1(nπ*) states, which takes place in about 80 fs and demonstrates that the S1(nπ*) state acts as a doorway to the triplet population in 522 fs. Our results are supported by MS-CASPT2 calculations, predicting a planar S2(ππ*) pseudo-minimum in agreement with the stimulated emission signal observed in the experiment.


Assuntos
Tioguanina/química , Espectrofotometria Ultravioleta
7.
Nat Commun ; 12(1): 7285, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907186

RESUMO

DNA owes its remarkable photostability to its building blocks-the nucleosides-that efficiently dissipate the energy acquired upon ultraviolet light absorption. The mechanism occurring on a sub-picosecond time scale has been a matter of intense debate. Here we combine sub-30-fs transient absorption spectroscopy experiments with broad spectral coverage and state-of-the-art mixed quantum-classical dynamics with spectral signal simulations to resolve the early steps of the deactivation mechanisms of uridine (Urd) and 5-methyluridine (5mUrd) in aqueous solution. We track the wave packet motion from the Franck-Condon region to the conical intersections (CIs) with the ground state and observe spectral signatures of excited-state vibrational modes. 5mUrd exhibits an order of magnitude longer lifetime with respect to Urd due to the solvent reorganization needed to facilitate bulky methyl group motions leading to the CI. This activates potentially lesion-inducing dynamics such as ring opening. Involvement of the 1nπ* state is found to be negligible.


Assuntos
Nucleosídeos de Pirimidina/química , Processos Fotoquímicos , Nucleosídeos de Pirimidina/efeitos da radiação , Pirimidinas/química , Pirimidinas/efeitos da radiação , Solventes/química , Espectrofotometria Ultravioleta , Raios Ultravioleta , Uridina/análogos & derivados , Uridina/química , Uridina/efeitos da radiação , Vibração
8.
ACS Photonics ; 8(8): 2234-2242, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34476287

RESUMO

Spectrally resolved measurements of optical activity, such as circular dichroism (CD) and optical rotatory dispersion (ORD), are powerful tools to study chiroptical properties of (bio)molecular and nanoplasmonic systems. The wider utilization of these techniques, however, has been impeded by the bulky and slow design of conventional spectropolarimeters, which have been limited to a narrowband scanning approach for more than 50 years. In this work, we demonstrate broadband measurements of optical activity by combining a balanced detection scheme with interferometric Fourier-transform spectroscopy. The setup utilizes a linearly polarized light field that creates an orthogonally polarized weak chiral free-induction-decay field, along with a phase-locked achiral transmitted signal, which serves as the local oscillator for heterodyne amplification. By scanning the delay between the two fields with a birefringent common-path interferometer and recording their interferogram with a balanced detector that measures polarization rotation, broadband CD and ORD spectra are retrieved simultaneously with a Fourier transform. Using an incoherent thermal light source, we achieve state-of-the-art sensitivity for CD and ORD across a broad wavelength range in a remarkably simple setup. We further demonstrate the potential of our technique for highly sensitive measurements of glucose concentration and the real-time monitoring of ground-state chemical reactions. The setup also accepts broadband pulses and will be suitable for broadband transient optical activity spectroscopy and broadband optical activity imaging.

9.
Opt Express ; 29(13): 20970-20980, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266173

RESUMO

Compression, shaping and characterization of broadband mid-infrared (MIR) pulses based on an acousto-optic modulator (AOM) pulse shaper is presented. Characterization of the spectral phase is achieved by an AOM-shaper based implementation of a dispersion scan (d-scan). The abilities of the setup are demonstrated by imprinting several test phases with increasing complexity on broadband MIR pulses centered at 3.2 µm and retrieval of the imprinted phases with the presented d-scan method. Phase characterization with d-scan in combination with an evolutionary algorithm allows us to compress the MIR pulses below 50 fs FWHM autocorrelation after the shaper.

10.
Opt Express ; 28(9): 13714-13720, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403840

RESUMO

Pulse compression in a short, normal dispersion photonic-crystal fiber is investigated with a Yb:CaGdAlO4 laser pumped by a low-power fiber-coupled single-mode diode that delivers 70-fs pulses at 1050 nm central wavelength, with 45-mW average power at 60 MHz repetition rate. A simple and power-efficient compressor based on a ∼15-cm long, low-cost commercial nonlinear fiber, with normal dispersion at the laser wavelength, produces pulses as short as 14.9 fs, corresponding to ∼4.25 optical cycles, with 29 mW average power after a prism-pair compressor in double pass configuration. Pulse quality was investigated with frequency resolved optical gating (FROG) analysis. Furthermore, a comparative analysis of noise properties of the oscillator, pump laser and compressed pulses has been performed.

11.
ACS Nano ; 14(5): 5700-5710, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32233453

RESUMO

We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution (∼20 fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single-layer (1L)-MoS2, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane A'1 phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a time scale of few tens of fs. We observe an enhancement by almost 2 orders of magnitude of the CP amplitude when detected in resonance with the C exciton peak, combined with a resonant enhancement of CP generation efficiency. Ab initio calculations of the change in the 1L-MoS2 band structure induced by the A'1 phonon displacement confirm a strong coupling with the C exciton. The resonant behavior of the CP amplitude follows the same spectral profile of the calculated Raman susceptibility tensor. These results explain the CP generation process in 1L-TMDs and demonstrate that CP excitation in 1L-MoS2 can be described as a Raman-like scattering process.

12.
Chemistry ; 26(1): 336-343, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31750960

RESUMO

Photoinduced processes in thiouracil derivatives have lately attracted considerable attention due to their suitability for innovative biological and pharmacological applications. Here, sub-20 fs broadband transient absorption spectroscopy in the near-UV are combined with CASPT2/MM decay path calculations to unravel the excited-state decay channels of water solvated 2-thio and 2,4-dithiouracil. These molecules feature linear absorption spectra with overlapping ππ* bands, leading to parallel decay routes which we systematically track for the first time. The results reveal that different processes lead to the triplet states population, both directly from the ππ* absorbing state and via the intermediate nπ* dark state. Moreover, the 2,4-dithiouracil decay pathways is shown to be strongly correlated either to those of 2- or 4-thiouracil, depending on the sulfur atom on which the electronic transition localizes.

13.
Proc Natl Acad Sci U S A ; 116(17): 8161-8166, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952788

RESUMO

We investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale. Two-dimensional finite-element method electromagnetic simulations of the composite nanostructure and multitemperature modeling of the energy flow dynamics enable us to identify the key mechanism presiding over the light-heat conversion in these kinds of nanomaterials. We demonstrate that hybrid (organic-inorganic) nanocrystal assemblies can operate as efficient nanoheaters by exploiting the high absorption from the individual nanocrystals, enabled by the dilution of the inorganic phase that is followed by a relatively fast heating of the embedding organic matrix, occurring on the 100-ps timescale.

14.
J Am Chem Soc ; 140(47): 16087-16093, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30380844

RESUMO

We combined sub-30 fs broadband transient absorption spectroscopy in the ultraviolet with state-of-the-art quantum mechanics/molecular mechanics simulations to study the ultrafast excited-state dynamics of the sulfur-substituted nucleobase 4-thiouracil. We observed a clear mismatch between the time scales for the decay of the stimulated emission from the bright ππ* state (76 ± 16 fs, experimentally elusive until now) and the buildup of the photoinduced absorption of the triplet state (225 ± 30 fs). These data provide evidence that the intersystem crossing occurs via a dark state, which is intermediately populated on the sub-100 fs time scale. Nonlinear spectroscopy simulations, extrapolated from a detailed CASPT2/MM decay path topology of the solvated system together with an excited state mixed quantum-classical nonadiabatic dynamics, reproduce the experimental results and explain the experimentally observed vibrational coherences. The theoretical analysis rationalizes the observed different triplet buildup times of 4- and 2-thiouracil.

15.
Nanotechnology ; 29(36): 365602, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29911655

RESUMO

A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule (QDM) fabrication and the metal nanoparticle alignment are discussed. The tuning of the relative positioning of QDMs and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical QDM was evaluated on the base of the morphological characterizations performed by atomic force microscopy and cross sectional scanning electron microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition.

16.
J Phys Chem Lett ; 9(7): 1534-1541, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29504764

RESUMO

We combine sub-20 fs transient absorption spectroscopy with state-of-the-art computations to study the ultrafast photoinduced dynamics of trans-azobenzene (AB). We are able to resolve the lifetime of the ππ* state, whose decay within ca. 50 fs is correlated to the buildup of the nπ* population and to the emergence of coherences in the dynamics, to date unobserved. Nonlinear spectroscopy simulations call for the CNN in-plane bendings as the active modes in the subps photoinduced coherent dynamics out of the ππ* state. Radiative to kinetic energy transfer into these modes drives the system to a high-energy planar nπ*/ground state conical intersection, inaccessible upon direct excitation of the nπ* state, that triggers an ultrafast (0.45 ps) nonproductive decay of the nπ* state and is thus responsible for the observed Kasha rule violation in UV excited trans-AB. On the other hand, cis-AB is built only after intramolecular vibrational energy redistribution and population of the NN torsional mode.

17.
Ultramicroscopy ; 187: 93-97, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427914

RESUMO

The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces.

18.
Opt Express ; 24(25): 28491-28499, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958492

RESUMO

We introduce a 2D electronic spectroscopy setup in the UV spectral range in the partially collinear pump-probe geometry. The required interferometrically phase-locked few-optical-cycle UV pulse pair is generated by combining a passive birefringent interferometer in the visible and nonlinear phase transfer. This is achieved by sum-frequency generation between the phase-locked visible pulse pair and narrowband infrared pulses. We demonstrate a pair of 16-fs, 330-nm pulses whose delay is interferometrically stable with an accuracy better than λ/450. 2DUV maps of pyrene solution probed in the UV and visible spectral ranges are demonstrated.

19.
Nat Commun ; 7: 11010, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984281

RESUMO

Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron-hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton-exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈ 250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics.

20.
ACS Nano ; 10(1): 1182-8, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26691058

RESUMO

Transition metal dichalcogenides (TMDs) are emerging as promising two-dimensional (2D) semiconductors for optoelectronic and flexible devices. However, a microscopic explanation of their photophysics, of pivotal importance for the understanding and optimization of device operation, is still lacking. Here, we use femtosecond transient absorption spectroscopy, with pump pulse tunability and broadband probing, to monitor the relaxation dynamics of single-layer MoS2 over the entire visible range, upon photoexcitation of different excitonic transitions. We find that, irrespective of excitation photon energy, the transient absorption spectrum shows the simultaneous bleaching of all excitonic transitions and corresponding red-shifted photoinduced absorption bands. First-principle modeling of the ultrafast optical response reveals that a transient bandgap renormalization, caused by the presence of photoexcited carriers, is primarily responsible for the observed features. Our results demonstrate the strong impact of many-body effects in the transient optical response of TMDs even in the low-excitation-density regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...