Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 88(4): 2140-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26752499

RESUMO

White adipose tissue inflammation (WATi) has been linked to the pathogenesis of obesity-related diseases, including type 2 diabetes, cardiovascular disease, and cancer. In addition to the obese, a substantial number of normal and overweight individuals harbor WATi, putting them at increased risk for disease. We report the first technique that has the potential to detect WATi noninvasively. Here, we used Raman spectroscopy to detect WATi with excellent accuracy in both murine and human tissues. This is a potentially significant advance over current histopathological techniques for the detection of WATi, which rely on tissue excision and, therefore, are not practical for assessing disease risk in the absence of other identifying factors. Importantly, we show that noninvasive Raman spectroscopy can diagnose WATi in mice. Taken together, these results demonstrate the potential of Raman spectroscopy to provide objective risk assessment for future cardiometabolic complications in both normal weight and overweight/obese individuals.


Assuntos
Tecido Adiposo Branco/patologia , Inflamação/patologia , Análise Espectral Raman/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia
2.
J Pathol Inform ; 3: 4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22439124

RESUMO

BACKGROUND: Microdissection testicular sperm extraction (micro-TESE) has replaced conventional testis biopsies as a method of choice for obtaining sperm for in vitro fertilization for men with nonobstructive azoospermia. A technical challenge of micro-TESE is that the low magnification inspection of the tubules with a surgical microscope is insufficient to definitively identify sperm-containing tubules, necessitating tissue removal and cytologic assessment. Full field optical coherence tomography (FFOCT) uses white light interference microscopy to generate quick high-resolution tomographic images of fresh (unprocessed and unstained) tissue. Furthermore, by using a nonlaser safe light source (150 W halogen lamp) for tissue illumination, it ensures that the sperm extracted for in vitro fertilization are not photo-damaged or mutagenized. MATERIALS AND METHODS: A focal Sertoli-cell only rodent model was created with busulfan injection in adult rats. Ex vivo testicular tissues from both normal and busulfan-treated rats were imaged with a commercial modified FFOCT system, Light-CT™, and the images were correlated with gold standard hematoxylin and eosin staining. RESULTS: Light-CT™ identified spermatogenesis within the seminiferous tubules in freshly excised testicular tissue, without the use of exogenous contrast or fixation. Normal adult rats exhibited tubules with uniform size and shape (diameter 328 ±11 µm). The busulfan-treated animals showed marked heterogeneity in tubular size and shape (diameter 178 ± 35 µm) and only 10% contained sperm within the lumen. CONCLUSION: FFOCT has the potential to facilitate real-time visualization of spermatogenesis in humans, and aid in micro-TESE for men with infertility.

3.
J Pathol Inform ; 2: 28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21773059

RESUMO

BACKGROUND: Here, we report the first use of a commercial prototype of full-field optical coherence tomography called Light-CT™. Based on the principle of white light interferometry, Light-CT™ generates quick high-resolution three-dimensional tomographic images from unprocessed tissues. Its advantage over the current intra-surgical diagnostic standard, i.e. frozen section analysis, lies in the absence of freezing artifacts, which allows real-time diagnostic impressions, and/or for the tissues to be triaged for subsequent conventional histopathology. MATERIALS AND METHODS: In this study, we recapitulate known normal histology in nine formalin fixed ex vivo rat organs (skin, heart, lung, liver, stomach, kidney, prostate, urinary bladder, and testis). Large surface and virtually sectioned stacks of images at varying depths were acquired by a pair of 10×/0.3 numerical aperture water immersion objectives, processed and visualized in real time. RESULTS: Normal histology of the following organs was recapitulated by identifying various tissue microstructures. Skin: epidermis, dermal-epidermal junction and hair follicles with surrounding sebaceous glands in the dermis. Stomach: mucosa with surface pits, submucosa, muscularis propria and serosa. Liver: hepatocytes separated by sinusoidal spaces, central veins and portal triad. Kidney: convoluted tubules, medullary rays (straight tubules) and collecting ducts. Prostate: acini and fibro-muscular stroma. Lung: bronchi, bronchioles, alveolar ducts, alveoli and pleura. Urinary bladder: urothelium, lamina propria, muscularis propria, and serosa. Testis: seminiferous tubules with intra-tubular sperms. CONCLUSION: Light-CT™ is a powerful imaging tool to perform fast histology on fresh and fixed tissues, without introducing artifacts. Its compact size, ease of handling, fast image acquisition and safe incident light levels makes it well-suited for various intra-operative and intra-procedural triaging and decision making applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...