Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(2): 2227-2236, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687096

RESUMO

Dementia or the loss of cognitive functioning is one of the major health issues in elderly people. Alzheimer's disease (AD) is one of the common forms of dementia. Treatment chiefly involves the use of acetylcholinesterase (AChE) inhibitors in AD. However, oxidative stress has also been found to be involved in the proliferation of the disease. Magnoflorine is one of the active compounds of Coptidis Rhizoma and has high anti-oxidative properties. Active principle-loaded nanoparticles have shown increased efficiency for neurodegenerative diseases due to their ability to cross the blood-brain barrier more easily. An in vitro study involving magnoflorine-loaded chitosan collagen nanocapsules (MF-CCNc) has shown them to possess inhibitory effects against oxidative stress and to some extent on AChE as well. In the current study, both nootropic and anti-amnesic effects of magnoflorine and MF-CCNc on scopolamine-induced amnesia in rats were evaluated. The treatment was done intraperitoneally (i.p.) once daily for 17 consecutive days with MF-CCNc (0.25, 0.5, and 1 mg), magnoflorine (1 mg), and donepezil (1 mg). To induce amnesia, hence, cognitive deficit rats were induced with scopolamine (1 mg/kg) daily for the last 9 days. Novel object recognition (NOR) and elevated plus maze (EPM) behavioral analysis were done to assess memory functioning. Hippocampal tissues were extracted to study the effect on biochemicals (AChE, MDA, SOD, and CAT), pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), and immunohistochemistry (brain-derived neurotrophic factor (BDNF) and DCX). MF-CCNc showed memory-enhancing effects in nootropic as well as chronic scopolamine-treated rats in NOR and an increase in inflexion ratio in EPM. MF-CCNc reduced the levels of AChE and MDA while increasing SOD and CAT levels in the hippocampus. MF-CCNc further lowered the levels of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. These nanocapsules further increased the expression of BDNF and DCX that are necessary for adult neurogenesis. From the research findings, it can be concluded that MF-CCNc has high anti-amnesic properties and could be a promising candidate for the treatment of AD.

2.
ACS Omega ; 7(8): 6472-6480, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252643

RESUMO

Neurodegeneration is one of the most common diseases in the aged population, characterized by the loss in the function of neuronal cells and their ultimate death. One of the common features in the progression of this type of diseases is the oxidative stress. Drugs which are currently being used have been found to show lateral side effects, which is partly due to their inefficiency to cross blood-brain barrier. Nanoencapsulation of bioactive compounds is a profound approach in this direction and has become a method of choice nowadays. This study involved the evaluation of the anti-oxidative properties of magnoflorine (MF), which is an aporphine quaternary alkaloid, and synthesis of MF-loaded chitosan-collagen nanocapsules (MF-CCNc) for its better efficacy as a potent anti-oxidant. Physiochemical characterization of the synthesized nanocapsules was done by using dynamic light scattering and transmission electron microscopy. It revealed that the synthesized nanocapsules are of small size range, as small as 12 ± 2 nm, and are more or less of spherical shape. Sustained release was shown by MF in the in vitro drug release studies. Both MF and MF-CCNc were found to have good anti-oxidant potential with IC50 < 25 µg/mL. No major cytotoxicity was shown by the synthesized nanocapsules on SH-SY5Y cells. In silico anti-acetylcholinesterase (AChE) studies were also done, and they revealed that MF can be a potent inhibitor of AChE.

3.
Int Immunopharmacol ; 101(Pt A): 108287, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34731689

RESUMO

Resveratrol has been found to exert protective effects in neurological disorders, including epilepsy. However, its poor bioavailability and difficulty in reaching the brain's targeted location reduce resveratrol's efficacy substantially. The side effects due to the higher concentration of drugs are another matter of concern. The objective of the present study is to propose solutions to these issues by encapsulating resveratrol in glutathione-coated collagen nanoparticles' core. The collagen nanoparticles increase the resveratrol's bioavailability, and glutathione helps in the passage of the encapsulated resveratrol to the target location in the brain. The concentration also substantially reduces due to resveratrol's encapsulation in glutathione-coated collagen nanoparticles. The encapsulated resveratrol is termed nanoresveratrol. The effectiveness of nanoresveratrol on epilepsy seizures was evaluated through histopathological examinations, ELISA tests, and qRT-PCR tests on the hippocampus of the kindled mice. The novelty of the present study thus lies in (i) the synthesis of nanoresveratrol using glutathione-coated collagen nanoparticles and (ii) the application of synthesized nanoresveratrol in the treatment of epilepsy. The study's outcome shows that nanoresveratrol has a favorable impact in reducing cognitive impairment in kindled mice, and it is more effective in controlling epilepsy seizures than resveratrol. The p-values of all the nanoresveratrol-given groups of mice (compared with the diseased group) were substantially smaller (∼10-4 to 10-2) than the significance level (0.05), indicating that the nanoresveratrol-given groups are significantly different from the diseased group, i.e., the nanoresveratrol has a significant effect on the mice. The concentration of resveratrol also decreases substantially in the proposed nanoformulation. It was observed that even 0.4 mg/kg of nanoformulation of resveratrol is performing better than 40 mg/kg of resveratrol.


Assuntos
Antioxidantes/administração & dosagem , Disfunção Cognitiva/tratamento farmacológico , Epilepsia/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Resveratrol/administração & dosagem , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Colágeno/química , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/complicações , Epilepsia/patologia , Glutationa/química , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pentilenotetrazol/administração & dosagem , Pentilenotetrazol/toxicidade
4.
RSC Adv ; 11(40): 24900-24916, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481013

RESUMO

Use of plant extracts for the synthesis of various metal nanoparticles has gained much importance recently because it is a simple, less hazardous, conservative and cost-effective method. In this research work, platinum nanoparticles were synthesized by treating platinum ions with the leaf extract of Psidium guajava and their structural properties were studied using various characterization techniques. The formation of platinum nanoparticles was confirmed by the disappearance of the absorbance peak at 261 nm in UV-visible spectra. The results of gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectroscopy (FT-IR) analysis showed functional moieties responsible for bio-reduction of metal ions and stabilization of platinum nanoparticles. The use of dynamic light scattering (DLS) imaging techniques confirmed the formation of stable monodispersed platinum nanoparticles showing a zeta potential of -23.4 mV. The morphological examination using high resolution transmission electron microscopy (HR-TEM) and Scanning electron microscopy (SEM) confirmed the formation of spherical platinum nanoparticles with an average diameter of 113.2 nm. X-ray powder diffraction (XRD) techniques showed the crystalline nature of biosynthesized platinum nanoparticles with a face-centered cubic structure. The results of energy-dispersive X-ray spectroscopy (EDAX) showed 100% platinum content by weight confirming the purity of the sample. The cytotoxic effect of biosynthesized platinum nanoparticles assessed in a breast cancer (MCF-7) cell-line by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, revealed an IC50 of 167.2 µg ml-1. The results of a wound healing assay showed that treatment with platinum nanoparticles induced an anti-migratory effect on MCF-7 cells. In the cell cycle phase distribution, treatment with platinum nanoparticles inhibited cell proliferation as determined by flow cytometry with PI staining. Significant cell cycle arrest was detected at the G0/G1 phase with a notable decrease in the distribution of cells in the S and G2/M phases. The anti-bacterial activity of bio-synthesized platinum nanoparticles was evaluated against four pathogenic bacteria i.e. B. cereus (Gram positive), P. aeruginosa (Gram negative), K. pneumonia (Gram negative) and E. coli (Gram negative). The biosynthesized platinum nanoparticles were found to show dose-dependent inhibition against pathogenic bacteria with a significant effect on Gram-negative bacteria compared to Gram-positive bacteria. This synergistic blend of green and simplistic synthesis coupled with anti-proliferative and anti-bacterial properties makes these biogenic nanoparticles suitable in nanomedicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...