Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(9): 3435-3447, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37698838

RESUMO

Real-time and high-performance monitoring of trace carbon dioxide (CO2) has become a necessity due to its substantial impact on the global climate, human health, indoor occupancy, and crop productivity. Two-dimensional materials such as transition metal dichalcogenides (TMDs) have gained significant interest in gas sensing applications owing to their intrinsically high surface-to-volume ratio. However, the research has been limited to prominent TMDs such as WS2 and MoS2. Specifically, the chemiresistive sensing performance of titanium disulfide (TiS2) has rarely been investigated. We present an electric-field-assisted TiS2 nanodisc assembly for the fabrication of a low-cost, low-power CO2 gas sensor based on charge transfer between physisorbed CO2 analyte molecules and TiS2 nanodiscs operating at room temperature. The physiochemical properties of the synthesized TiS2 nanodiscs were investigated via scanning electron microscopy (SEM), electron diffraction spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The fabricated sensor demonstrated an ultra-high sensor response of 60%, a fast response time of 37 s toward 500 ppm CO2 gas, and the lowest detection limit of 5 ppm under ambient conditions. The low adsorption energies and vdW interaction between CO2 molecules and TiS2 resulted in easy desorption, allowing the sensor to self-recover without the need for external stimuli, which is hardly been witnessed in other 2D material analogues. Furthermore, the sensor has excellent reproducibility and stability for successive analyte exposures, as well as excellent selectivity for CO2 over other interfering gases. This reported sensor based on 2D TMDs is the first of its type to integrate such a broad range of sensor characteristics (such as high sensor response and sensitivity, rapid response and recovery times, a high signal-to-noise ratio, and excellent selectivity at room temperature) into a single, revolutionary device for CO2 detection.


Assuntos
Dióxido de Carbono , Gases , Humanos , Reprodutibilidade dos Testes , Temperatura , Adsorção
2.
Sensors (Basel) ; 23(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37430866

RESUMO

Photodetectors that can operate over a wide range of temperatures, from cryogenic to elevated temperatures, are crucial for a variety of modern scientific fields, including aerospace, high-energy science, and astro-particle science. In this study, we investigate the temperature-dependent photodetection properties of titanium trisulfide (TiS3)- in order to develop high-performance photodetectors that can operate across a wide range of temperatures (77 K-543 K). We fabricate a solid-state photodetector using the dielectrophoresis technique, which demonstrates a quick response (response/recovery time ~0.093 s) and high performance over a wide range of temperatures. Specifically, the photodetector exhibits a very high photocurrent (6.95 × 10-5 A), photoresponsivity (1.624 × 108 A/W), quantum efficiency (3.3 × 108 A/W·nm), and detectivity (4.328 × 1015 Jones) for a 617 nm wavelength of light with a very weak intensity (~1.0 × 10-5 W/cm2). The developed photodetector also shows a very high device ON/OFF ratio (~32). Prior to fabrication, the TiS3 nanoribbons were synthesized using the chemical vapor technique and characterized according to their morphology, structure, stability, and electronic and optoelectronic properties; this was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and a UV-Visible-NIR spectrophotometer. We anticipate that this novel solid-state photodetector will have broad applications in modern optoelectronic devices.

3.
ACS Omega ; 8(1): 893-906, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643491

RESUMO

There is an ever-growing interest in the detection of carbon dioxide (CO2) due to health risks associated with CO2 emissions. Hence, there is a need for low-power and low-cost CO2 sensors for efficient monitoring and sensing of CO2 analyte molecules in the environment. This study reports on the synthesis of single-walled carbon nanotubes (SWCNTs) that are functionalized using polyethyleneimine and starch (PEI-starch) in order to fabricate a PEI-starch functionalized SWCNT sensor for reversible CO2 detection under ambient room conditions (T = 25 °C; RH = 53%). Field-emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy are used to analyze the physiochemical properties of the as-synthesized gas sensor. Due to the large specific surface area of SWCNTs and the efficient CO2 capturing capabilities of the amine-rich PEI layer, the sensor possesses a high CO2 adsorption capacity. When exposed to varying CO2 concentrations between 50 and 500 ppm, the sensor response exhibits a linear relationship with an increase in analyte concentration, allowing it to operate reliably throughout a broad range of CO2 concentrations. The sensing mechanism of the PEI-starch-functionalized SWCNT sensor is based on the reversible acid-base equilibrium chemical reactions between amino groups of PEI and adsorbed CO2 molecules, which produce carbamates and bicarbonates. Due to the presence of hygroscopic starch that attracts more water molecules to the surface of SWCNTs, the adsorption capacity of CO2 gas molecules is enhanced. After multiple cycles of analyte exposure, the sensor recovers to its initial resistance level via a UV-assisted recovery approach. In addition, the sensor exhibits great stability and reliability in multiple analyte gas exposures as well as excellent selectivity to carbon dioxide over other interfering gases such as carbon monoxide, oxygen, and ammonia, thereby showing the potential to monitor CO2 levels in various infrastructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...