Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(4): 2040-2050, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128136

RESUMO

Biological invasions threaten global biodiversity and natural resources. Anticipating future invasions is central to strategies for combating the spread of invasive species. Ecological niche models are thus increasingly used to predict potential distribution of invasive species. In this study, we compare ecological niches of Rhododendron ponticum in its native (Iberian Peninsula) and invasive (Britain) ranges. Here, we test the conservation of ecological niche between invasive and native populations of R. ponticum using principal component analysis, niche dynamics analysis, and MaxEnt-based reciprocal niche modeling. We show that niche overlap between native and invasive populations is very low, leading us to the conclusion that the two niches are not equivalent and are dissimilar. We conclude that R. ponticum occupies novel environmental conditions in Britain. However, the evidence of niche shift presented in this study should be treated with caution because of nonanalogue climatic conditions between native and invasive ranges and a small population size in the native range. We then frame our results in the context of contradicting genetic evidence on possible hybridization of this invasive species in Britain. We argue that the existing contradictory studies on whether hybridization caused niche shift in R. ponticum are not sufficient to prove or disprove this hypothesis. However, we present a series of theoretical arguments which indicate that hybridization is a likely cause of the observed niche expansion of R. ponticum in Britain.

2.
R Soc Open Sci ; 6(5): 190026, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218047

RESUMO

Significant changes in the composition and extent of the UK forest cover are likely to take place in the coming decades. Current policy targets an increase in forest area, for example, the Welsh Government aims for forest expansion by 2030, and a purposeful shift from non-native conifers to broadleaved tree species, as identified by the UK Forestry Standard Guidelines on Biodiversity. Using the example of Wales, we aim to generate an evidence-based projection of the impact of contrasting policy scenarios on the state of forests in the near future, with the view of stimulating debate and aiding decisions concerning plausible outcomes of different policies. We quantified changes in different land use and land cover (LULC) classes in Wales between 2007 and 2015 and used a multi-layer perceptron-Markov chain ensemble modelling approach to project the state of Welsh forests in 2030 under the current and an alternative policy scenario. The current level of expansion and restoration of broadleaf forest in Wales is sufficient to deliver on existing policy goals. We also show effects of a more ambitious afforestation policy on the Welsh landscape. In a key finding, the highest intensity of broadleaf expansion is likely to shift from southeastern to more central areas of Wales. The study identifies the key predictors of LULC change in Wales. High-resolution future land cover simulation maps using these predictors offer an evidence-based tool for forest managers and government officials to test the effects of existing and alternative policy scenarios.

3.
Sci Rep ; 8(1): 7168, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740002

RESUMO

Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...