Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(8)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628672

RESUMO

World-wide, rice (Oryza sativa L.) is an important food source, and its production is often adversely affected by salinity. Therefore, to ensure stable rice yields for global food security, it is necessary to understand the salt tolerance mechanism of rice. The present study focused on the expression pattern of the rice mismatch repair gene post-meiotic segregation 1 (OsPMS1), studied the physiological properties and performed transcriptome analysis of ospms1 mutant seedlings in response to salt stress. Under normal conditions, the wild-type and ospms1 mutant seedlings showed no significant differences in growth and physiological indexes. However, after exposure to salt stress, compared with wild-type seedlings, the ospms1 mutant seedlings exhibited increased relative water content, relative chlorophyll content, superoxide dismutase (SOD) activity, K+ and abscisic acid (ABA) content, and decreased malondialdehyde (MDA) content, Na+ content, and Na+/K+ ratio, as well as decreased superoxide anion (O2-) and hydrogen peroxide (H2O2) accumulation. Gene ontology (GO) analysis of the differentially expressed genes (DEGs) of ospms1 mutant seedlings treated with 0 mM and 150 mM NaCl showed significant enrichment in biological and cytological processes, such as peroxidase activity and ribosomes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis showed that the DEGs specifically enriched ascorbate and aldarate metabolism, flavone and flavonol biosynthesis, and glutathione metabolism pathways. Further quantitative real-time reverse transcription-PCR (qRT-PCR) analysis revealed significant changes in the transcription levels of genes related to abscisic acid signaling (OsbZIP23, OsSAPK6, OsNCED4, OsbZIP66), reactive oxygen scavenging (OsTZF1, OsDHAR1, SIT1), ion transport (OsHAK5), and osmoregulation (OsLEA3-2). Thus, the study's findings suggest that the ospms1 mutant tolerates salt stress at the seedling stage by inhibiting the accumulation of reactive oxygen species, maintaining Na+ and K+ homeostasis, and promoting ABA biosynthesis.


Assuntos
Ácido Abscísico , Tolerância ao Sal , Tolerância ao Sal/genética , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Homeostase/genética , Íons
2.
Front Plant Sci ; 13: 1068769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531377

RESUMO

Cadmium is one of the most common heavy metal contaminants found in agricultural fields. MutSα, MutSß, and MutSγ are three different MutS-associated protein heterodimer complexes consisting of MSH2/MSH6, MSH2/MSH3, and MSH2/MSH7, respectively. These complexes have different mismatch recognition properties and abilities to support MMR. However, changes in mismatch repair genes (OsMSH2, OsMSH3, OsMSH6, and OsMSH7) of the MutS system in rice, one of the most important food crops, under cadmium stress and their association with E2Fs, the key transcription factors affecting cell cycles, are poorly evaluated. In this study, we systematically categorized six rice E2Fs and confirmed that OsMSHs were the downstream target genes of E2F using dual-luciferase reporter assays. In addition, we constructed four msh mutant rice varieties (msh2, msh3, msh6, and msh7) using the CRISPR-Cas9 technology, exposed these mutant rice seedlings to different concentrations of cadmium (0, 2, and 4 mg/L) and observed changes in their phenotype and transcriptomic profiles using RNA-Seq and qRT-PCR. We found that the difference in plant height before and after cadmium stress was more significant in mutant rice seedlings than in wild-type rice seedlings. Transcriptomic profiling and qRT-PCR quantification showed that cadmium stress specifically mobilized cell cycle-related genes ATR, CDKB2;1, MAD2, CycD5;2, CDKA;1, and OsRBR1. Furthermore, we expressed OsE2Fs in yeasts and found that heterologous E2F expression in yeast strains regulated cadmium tolerance by regulating MSHs expression. Further exploration of the underlying mechanisms revealed that cadmium stress may activate the CDKA/CYCD complex, which phosphorylates RBR proteins to release E2F, to regulate downstream MSHs expression and subsequent DNA damage repairment, thereby enhancing the response to cadmium stress.

3.
Yi Chuan ; 40(3): 171-185, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29576541

RESUMO

Low temperature is a major factor affecting rice geographical distribution growth, development, and productivity. Cold stress mediates a series of physiological and metabolite changes, such as alterations in chlorophyll fluorescence, electrolyte leakage, reactive oxygen species (ROS), malondialdehyde (MAD), sucrose, lipid peroxides, proline, and other metabolites, plant endogenous hormones abscisic acid (ABA) and gibberellin (GA) also changes. In this review, we summarize the recent research progress on physiological and metabolic changes under low temperature, cold stress related loci and QTL reported by map-based cloning and genome-wide association analysis (GWAS), and some molecular mechanisms in response to low temperature in rice. We also discuss the future prospects on breeding cold tolerance varieties of rice.


Assuntos
Oryza/fisiologia , Proteínas de Plantas/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
4.
Yi Chuan ; 38(8): 746-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27531613

RESUMO

The transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are two current genome editing technologies. Here, we compare and analyze the characteristics of the targeted mutations mediated by these two systems, such as efficiency, type, position, time, and genetic patterns. Both the TALEN and CRISPR/Cas9 systems can induce site-specific mutations in T0 rice plants effectively, but CRISPR/Cas9 is more effective. The major mutation type in both systems is the short insertion/deletion(InDel) mutation within 10 base pairs: deletions ranging from 1 to 10 bps are more often in TALEN, and 1bp insertions are more often in CRISPR/Cas9. Moreover, double-strand breaks (DSBs) generated by CRISPR/Cas9 are more precise than TALEN. In addition, DSBs could be repaired by the homologous recombination at a low frequency, causing DNA fragment duplication mutations. In some cases, the DNA fragments between the two close targets are deleted or inverted, and the mutation efficiency does not positively correlatewith the mutation efficiency of each target. Mutagenesis mediated by the TALEN or CRISPR/Cas9 system can occur as early as in transformed callus cells, and less frequently in somatic cells. Consequently, four different mutation types are formed, including homozygous, heterozygous, bi-allelic and chimeric mutations, with bi-allelic mutations having the highest rate and chimeric mutations having the lowest rate. All, except chimeric mutations, can descend stably into the next generation.


Assuntos
Genoma de Planta/genética , Mutagênese/genética , Mutação/genética , Oryza/genética , Plantas Geneticamente Modificadas/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos
5.
J Integr Plant Biol ; 53(9): 710-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21605340

RESUMO

In rice, one detrimental factor influencing single panicle yield is the frequent occurrence of panicle apical abortion (PAA) under unfavorable climatic conditions. Until now, no detailed genetic information has been available to avoid PAA in rice breeding. Here, we show that the occurrence of PAA is associated with the accumulation of excess hydrogen peroxide. Quantitative trait loci (QTLs) mapping for PAA in an F(2) population derived from the cross of L-05261 (PAA line) × IRAT129 (non-PAA variety) identified seven QTLs over a logarithm of the odd (LOD) threshold of 2.5, explaining approximately 50.1% of phenotypic variance for PAA in total. Five of the QTLs with an increased effect from L-05261, were designated as qPAA3-1, qPAA3-2, qPAA4, qPAA5 and qPAA8, and accounted for 6.8%, 5.9%, 4.2%, 13.0% and 12.2% of phenotypic variance, respectively. We found that the PAA in the early heading plants was mainly controlled by qPAA8. Subsequently, using the sub-populations specific for qPAA8 based on marker-assisted selection, we further narrowed qPAA8 to a 37.6-kb interval delimited by markers RM22475 and 8-In112. These results are beneficial for PAA gene clone.


Assuntos
Genes de Plantas/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Mapeamento Físico do Cromossomo/métodos , Proteínas de Plantas/genética , Cruzamentos Genéticos , Ligação Genética , Peróxido de Hidrogênio/metabolismo , Repetições de Microssatélites/genética , Fenótipo , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...