Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7662-7671, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870422

RESUMO

Extensive investigations have proven the effectiveness of elastic binders in settling the challenge of structural damage posed by volume expansion of high-capacity anode used in nanoscale silicon. However, the sluggish ionic conductivity of polymer binder severely restricts the electrode reactions, making it unsuitable for practical applications. Inspired by the biological tissues with rapid neurotransmission and robust muscles, we propose a biomimetic binder that contains ionic conductive polymer (by polymerization reaction of poly(ethylene glycol) diglycidyl ether and polyethylenimine) and rigid polymer backbone (polyacrylic acid), which can effectively mitigate both Li-ion transport resistance and lithiation stress to stabilize the silicon nanoparticles during cycles. Consequently, the silicon anode with biomimetic binder achieves a rate capability of 1897 mAh g-1 at 8.0 A g-1 and capacity retention of 87% after 150 cycles under areal capacity upon 3.0 mAh cm-2. These results demonstrate the possibility of decoupling ionic conductivity from mechanical properties toward practical high-capacity anodes for energy-dense batteries.

2.
Nanomicro Lett ; 14(1): 218, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352159

RESUMO

Aqueous zinc-ion batteries (AZIBs) are one of the promising energy storage systems, which consist of electrode materials, electrolyte, and separator. The first two have been significantly received ample development, while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention. In this work, a separator (UiO-66-GF) modified by Zr-based metal organic framework for robust AZIBs is proposed. UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of (002) crystal plane, which is favorable for corrosion resistance and dendrite-free zinc deposition. Consequently, Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm-2, and Zn|UiO-66-GF-2.2|MnO2 cells show excellent long-term stability with capacity retention of 85% after 1000 cycles. The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...