Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Acta Pharm Sin B ; 14(3): 1441-1456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487002

RESUMO

Excessive and uncontrollable inflammatory responses in alveoli can dramatically exacerbate pulmonary disease progressions through vigorous cytokine releases, immune cell infiltration and protease-driven tissue damages. It is an urgent need to explore potential drug strategies for mitigating lung inflammation. Protease-activated receptor 2 (PAR2) as a vital molecular target principally participates in various inflammatory diseases via intracellular signal transduction. However, it has been rarely reported about the role of PAR2 in lung inflammation. This study applied CRISPR-Cas9 system encoding Cas9 and sgRNA (pCas9-PAR2) for PAR2 knockout and fabricated an anionic human serum albumin-based nanoparticles to deliver pCas9-PAR2 with superior inflammation-targeting efficiency and stability (TAP/pCas9-PAR2). TAP/pCas9-PAR2 robustly facilitated pCas9-PAR2 to enter and transfect inflammatory cells, eliciting precise gene editing of PAR2 in vitro and in vivo. Importantly, PAR2 deficiency by TAP/pCas9-PAR2 effectively and safely promoted macrophage polarization, suppressed pro-inflammatory cytokine releases and alleviated acute lung inflammation, uncovering a novel value of PAR2. It also revealed that PAR2-mediated pulmonary inflammation prevented by TAP/pCas9-PAR2 was mainly dependent on ERK-mediated NLRP3/IL-1ß and NO/iNOS signalling. Therefore, this work indicated PAR2 as a novel target for lung inflammation and provided a potential nanodrug strategy for PAR2 deficiency in treating inflammatory diseases.

2.
ACS Nano ; 17(21): 21782-21798, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922196

RESUMO

mRNA antigens require powerful nanocarriers for efficient delivery, as well as immunomodulators for controlling their excessive immunogenicity. While lipid nanoparticles (LNPs) used in mRNA vaccines exhibited systemic toxicity, there is an urgent need for developing potential nanoparticles with strong immunoenhancing effects for mRNA antigens. Although natural polysaccharides as adjuvants assisted various types of antigens in triggering potent immune responses, they have been rarely investigated in mRNA vaccines. Here, we constructed four polysaccharide nanoparticles with different molecular weights (MWs) to deliver and protect mRNA antigens, and boosted antigen cross-presentation, DC maturation, CD4+/CD8+T cell responses and humoral immune responses. Importantly, the immunoenhancing capacities of polysaccharide nanoparticles were highly dependent on their MW properties. CS NPs with high MW initiated stimulator of interferon genes (STING)-mediated autophagy and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signaling, consequently possessing superior mRNA antigen-specific immune responses in vitro and in vivo. In contrast, CS NPs with low MWs induced NLRP3 signaling without STING or autophagy activation, which failed to induce robust immune responses. Therefore, it uncovered the MW-dependent immunoenhancing effects and mechanism of polysaccharide nanoparticles, providing a platform for designing potential nanosized polysaccharide immunomodulators for mRNA vaccines.


Assuntos
Interferons , Nanopartículas , Interferons/farmacologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Antígenos , Adjuvantes Imunológicos/farmacologia , Polissacarídeos/farmacologia , Apresentação de Antígeno , Vacinas de mRNA
3.
J Control Release ; 363: 733-746, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827223

RESUMO

Metastasis is one of the most significant causes for deterioration of breast cancer, contributing to the clinical failure of anti-tumour drugs. Excessive inflammatory responses intensively promote the occurrence and development of tumour, while protease-activated receptor 2 (PAR2) as a cell membrane receptor actively participates in both tumour cell functions and inflammatory responses. However, rare investigations linked PAR2-mediated inflammatory environment to tumour progression. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology is an emerging and powerful gene editing technique and can be applied for probing the new role of PAR2 in breast cancer metastasis, but it still needs the development of an efficient and safe delivery system. This work constructed anionic bovine serum albumin (BSA) nanoparticles to encapsulate CRISPR/Cas9 plasmid encoding PAR2 sgRNA and Cas9 (tBSA/Cas9-PAR2) for triggering PAR2 deficiency. tBSA/Cas9-PAR2 remarkably promoted CRISPR/Cas9 to enter and transfect both inflammatory and cancer cells, initiating precise PAR2 gene editing in vitro and in vivo. PAR2 deficiency by tBSA/Cas9-PAR2 effectively suppressed NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signalling in inflammatory microenvironment to magnify stimulator of interferon genes (STING) signalling, reactive oxygen species (ROS) accumulation and epithelial-mesenchymal transition (EMT) reversal, consequently preventing breast cancer metastasis. Therefore, this study not only demonstrated the involvement and underlying mechanism of PAR2 in tumour progression via modulating inflammatory microenvironment, but also suggested PAR2 deficiency by tBSA/Cas9-PAR2 as an attractive therapeutic strategy candidate for breast cancer metastasis.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Sistemas CRISPR-Cas , Receptor PAR-2/genética , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Neoplasias da Mama/genética , Microambiente Tumoral
4.
Acta Biomater ; 169: 1-18, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517621

RESUMO

G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , Membrana Celular/metabolismo , Nanotecnologia
5.
FEBS J ; 289(14): 4000-4020, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35175692

RESUMO

Inflammatory diseases have become increasingly prevalent throughout the world. Coronavirus disease 2019 (COVID-19), which has recently become pandemic, also exhibits hyperinflammation and cytokine release syndrome. To address inflammation-related diseases, numerous molecular targets have been explored in preclinical studies and clinical trials. Among them, the protease-activated receptors (PARs) that belong to G protein-coupled receptors are one of the most popular classes of drug targets, participating in inflammatory signalling and diseases. PARs activation can trigger downstream intracellular signalling to modulate a variety of inflammatory responses in multiple systems, including nervous, respiratory, digestive, circulatory, urinary and immune systems. Importantly, there are the Yin-Yang effects, comprising anti- and pro-inflammatory roles, of PARs activation in different types of inflammations, and these are context-dependent. Alternatively, it was recently revealed that PARs not only modulate inflammatory-related tumour progression, but also participate in inflammatory cytokine release related to COVID-19 via direct interaction with severe acute respiratory syndrome coronavirus 2 protein, suggesting that PARs also participate in other diseases via inflammatory responses. In this review, we renew and discuss the findings of PARs as molecular targets for treating inflammatory diseases, highlighting the novel roles of PARs and facilitating a better understanding of their designated values in the specific inflammatory environment.


Assuntos
Tratamento Farmacológico da COVID-19 , Receptores Ativados por Proteinase , Humanos , Inflamação , Receptores Ativados por Proteinase/metabolismo , Transdução de Sinais/fisiologia
6.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599981

RESUMO

Osimertinib, as the third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), is a first-line molecularly targeted drug for non-small cell lung cancer (NSCLC). However, the emergence of therapeutic resistance to osimertinib markedly impairs its efficiency and efficacy, leading to the failure of clinical applications. Novel molecular targets and drugs are urgently needed for reversing osimertinib resistance in NSCLC. Protease-activated receptor 2 (PAR2) that belongs to a subfamily of G protein-coupled receptors can stimulate the transactivation of EGFR to regulate multiple cellular signalling, actively participating in tumour progression. This study firstly discovered that PAR2 expression was notably enhanced when NSCLC cells became resistant to osimertinib. A PAR2 inhibitor facilitated osimertinib to attenuate EGFR transactivation, ERK phosphorylation, EMT and PD-L1 expression which were associated to osimertinib resistance. The combination of the PAR2 inhibitor and osimertinib also notably blocked cell viability, migration, 3D sphere formation and in vivo tumour growth whereas osimertinib itself lost such inhibitory effects in osimertinib-resistant NSCLC cells. Importantly, this reversal effect of PAR2 blockade was uncovered to depend on ERK-mediated EMT and PD-L1, since inhibition of ß-arrestin or ERK, which could be modulated by PAR2, sensitized osimertinib to prevent EMT, PD-L1 expression and consequently overcame osimertinib resistance. Thus, this study demonstrated that PAR2 antagonism could limit ERK-mediated EMT and immune checkpoints, consequently attenuating EGFR transactivation and reactivate osimertinib. It suggested that PAR2 may be a novel drug target for osimertinib resistance, and PAR2 inhibition may be a promising strategy candidate for reversing EGFR-TKI resistance in NSCLC.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Receptor PAR-2/antagonistas & inibidores , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Animais , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Lipopeptídeos/farmacologia , Lipopeptídeos/uso terapêutico , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor PAR-2/metabolismo
7.
Front Pharmacol ; 12: 625289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967759

RESUMO

Drug resistance can notably restrict clinical applications of gefitinib that is a commonly used EGFR-tyrosine kinase inhibitors (EGFR-TKIs) for non-small cell lung cancer (NSCLC). The attempts in exploring novel drug targets and reversal strategies are still needed, since gefitinib resistance has not been fully addressed. Protease-activated receptor 2 (PAR2), a G protein-coupled receptor, possesses a transactivation with EGFR to initiate a variety of intracellular signal transductions, but there is a lack of investigations on the role of PAR2 in gefitinib resistance. This study established that protease-activated receptor 2 (PAR2), actively participated in NSCLC resistant to gefitinib. PAR2 expression was significantly up-regulated when NSCLC cells or tumor tissues became gefitinib resistance. PAR2 inhibition notably enhanced gefitinib to modulate EGFR transactivation, cell viability, migration and apoptosis in gefitinib-sensitive and-resistant NSCLC cells, suggesting its reversal effects in gefitinib resistance. Meanwhile, the combination of a PAR2 inhibitor (P2pal-18S) and gefitinib largely blocked ERK phosphorylation and epithelial-mesenchymal transition (EMT) compared to gefitinib alone. Importantly, we probed its underlying mechanism and uncovered that PAR2 blockade sensitized gefitinib and reversed its resistance mainly via ß-arrestin-EGFR-ERK signaling axis. These effects of PAR2 inhibition were further confirmed by the in vivo study which showed that P2pal-18S reactivated gefitinib to inhibit tumor growth via restricting ERK activation. Taken together, this study could not only reveal a new mechanism of receptor-mediated transactivation to modulate drug resistance, but also provide a novel drug target and direction for overcoming gefitinib resistance in NSCLC.

8.
BMC Complement Med Ther ; 20(1): 252, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799864

RESUMO

BACKGROUND: Monoamine oxidase (MAO) A catalyzes oxidative deamination of monoamine neurotransmitters and dietary amines and regulates brain development and functions. Recently, we showed that MAO A mediates the progression and migration of glioma and MAO A inhibitors reduce glioma cell growth. Glioblastoma (GBM) is a common and most malignant brain tumor which is difficult to treat. Temozolomide (TMZ) is the current standard chemotherapy for glioma, but tumors usually become resistant and recur. So far, no effective therapy for TMZ-resistant glioma is available. Natural plant antimicrobial solution (PAMs) is a Chinese herbal medicine which has been used for decades without toxicity and has multiple medical functions including anti- inflammatory effects. Here, we report the effects of PAMs on glioblastoma growth. METHODS: The growth of TMZ -sensitive (U251S),-resistant (U251R) human glioma cells, and mouse glioma cell line GL-26 were assessed by MTS colorimetric assay, colony formation, and cell migration assays. Male C57BL/6 mice were implanted subcutaneously or intracranial with luciferase-positive mouse glioma GL-26 cells and treated with vehicle; MAO A inhibitor clorgyline (10 mg/kg); TMZ (1 mg/kg); PAMs (48 mg/kg) alone or in combination with TMZ (1 mg/kg) for 14 days. At the end of the treatment, mice were sacrificed, MAO A catalytic activity in tumors was measured, and tumor sizes were determined by imaging and weight. RESULTS: These results show that PAMs inhibits MAO A catalytic activity in all three glioma cell lines studied U251S, U251R, and GL-26. PAMs reduced glioma growth and has greater effects in combination with low dose of TMZ than PAMS or TMZ alone in all three cell lines as shown by MTS, colony formation, and cell migration assays. Using the subcutaneous or intracranial GL-26 glioma mouse model, PAMs reduced the tumor growth and MAO A activity, similar to the MAO A inhibitor clorgyline. Combining PAMs with non-toxic dose TMZ increased survival to a greater extent than those of PAMs or TMZ alone. CONCLUSIONS: This is the first study which suggests that PAMs alone or co-administration with low doses of TMZ may be a potential adjuvant to reduce the toxicity of TMZ and to abrogate drug resistance for the effective treatment of glioma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Glioblastoma/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/enzimologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quimioterapia Combinada , Glioblastoma/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temozolomida/farmacologia
9.
Curr Pharm Des ; 26(17): 1952-1963, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133959

RESUMO

G protein-coupled receptors (GPCRs) are highly expressed on a variety of tumour tissues while several GPCR exogenous ligands become marketed pharmaceuticals. In recent decades, cancer stem cells (CSCs) become widely investigated drug targets for cancer therapy but the underlying mechanism is still not fully elucidated. There are vigorous participations of GPCRs in CSCs-related signalling and functions, such as biomarkers for CSCs, activation of Wnt, Hedgehog (HH) and other signalling to facilitate CSCs progressions. This relationship can not only uncover a novel molecular mechanism for GPCR-mediated cancer cell functions but also assist our understanding of maintaining and modulating CSCs. Moreover, GPCR antagonists and monoclonal antibodies could be applied to impair CSCs functions and consequently attenuate tumour growth, some of which have been undergoing clinical studies and are anticipated to turn into marketed anticancer drugs. Therefore, this review summarizes and provides sufficient evidences on the regulation of GPCR signalling in the maintenance, differentiation and pluripotency of CSCs, suggesting that targeting GPCRs on the surface of CSCs could be potential therapeutic strategies for cancer therapy.


Assuntos
Proteínas Hedgehog , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/química , Receptores Acoplados a Proteínas G , Transdução de Sinais
10.
Genes Genomics ; 41(8): 951-959, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31066006

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the leading cause of cancer mortality and without effective prognosis. Previous study has been confirmed that the abnormal expression of long non-coding RNAs (lncRNAs) TGFB2-AS1 was involved in tumorigenesis. However, the biological functions of TGFB2-AS1 in hepatocellular carcinoma (HCC) remain largely unclear. OBJECTIVE: We comprehensively assess the clinical significance of TGFB2-AS1 and investigate the biological functions of TGFB2-AS1 on HCC HepG2 cells. METHODS: We firstly confirmed the expression of TGFB2-AS1 between tumor and normal tissues using public available transcriptome data. We analyzed the clinical significance of TGFB2-AS1 using the TCGA HCC datasets. The biological functions of TGFB2-AS1 on HCC HepG2 cells were explored by multiple in vitro assays. RESULTS: We found that TGFB2-AS1 was remarkably increased in HCC tissues (P = 0.00148) and exhibited a potential predictive marker for HCC, with an area under curve (AUC) of 0.708 (P = 0.0034) using the fifty pairs of matched HCC tissues of TCGA. Besides, higher expression of TGFB2-AS1 in HCC tissues was identified as being positively associated with advanced tumor (P = 0.012) and disease stage (P = 0.009) in 355 HCC cases using independent sample nonparametric test. Downregulation of TGFB2-AS1 expression significantly restrained proliferation (P < 0.01) and impaired colony formation (P < 0.05). Furthermore, TGFB2-AS1 depletion remarkably promoted the apoptosis of HepG2 cells (P < 0.05) and inhibited migration and invasion (P < 0.01). CONCLUSION: Taken together, these findings suggested that TGFB2-AS1 might serve as a potential therapeutic target for HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular/genética , Movimento Celular , Proliferação de Células , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Carcinoma Hepatocelular/metabolismo , Regulação para Baixo , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta2/genética
12.
Neurobiol Aging ; 66: 178.e1-178.e8, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29395286

RESUMO

Although multiple susceptibility loci for late-onset Alzheimer's disease (LOAD) have been identified, a large portion of the genetic risk for this disease remains unexplained. LOAD risk may be associated with single-nucleotide polymorphisms responsible for changes in gene expression (eSNPs). To detect eSNPs associated with LOAD, we integrated data from LOAD genome-wide association studies and expression quantitative trait loci using Sherlock (a Bayesian statistical method). We identified a cis-regulatory eSNP (rs2927438) located on chromosome 19q13.32, for which subsequent analyses confirmed the association with both LOAD risk and the expression level of several nearby genes. Importantly, rs2927438 may represent an APOE-independent LOAD eSNP according to the weak linkage disequilibrium of rs2927438 with the 2 polymorphisms (rs7412 and rs429358) defining the APOE-ε2, -ε3, and -ε4 alleles. Furthermore, rs2927438 does not influence chromatin interaction events at the APOE locus or cis-regulation of APOE expression. Further exploratory analysis revealed that rs2927438 is significantly associated with tau levels in the cerebrospinal fluid. Our findings suggest that rs2927438 may confer APOE-independent risk for LOAD.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Cromossomos Humanos Par 19/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Proteínas tau/líquido cefalorraquidiano , Alelos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Feminino , Expressão Gênica/genética , Predisposição Genética para Doença/genética , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Desequilíbrio de Ligação/genética , Masculino , Tamanho do Órgão , Fragmentos de Peptídeos/metabolismo , Locos de Características Quantitativas/genética , Risco , Proteínas tau/metabolismo
13.
Biotechnol Lett ; 39(11): 1639-1647, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28762034

RESUMO

OBJECTIVE: To characterize the transcriptome profile of hepatocellular carcinoma (HCC) HepG2 cells treated with peptide 9R-P201 for further functional verification and HCC drug development. RESULTS: 1557 mRNAs (1125 upregulated and 432 downregulated) and 881 lncRNAs (640 upregulated and 241 downregulated) with significant differential expression were identified using RNA-seq. The qRT-PCR results showed that the differential expression of several mRNAs and lncRNAs coincided with the RNA-seq results. Differentially expressed mRNAs and lncRNAs presented a significant difference in genomic characteristics but no preference under 9R-P201 treatment compared with control. The GO and KEGG functional enrichment analyses showed that differentially expressed mRNAs and lncRNAs remarkably enriched in cancer-related biological processes and signaling pathways. Finally, we screened out 33 TFs, 273 lncRNAs and 94 target genes with high degree interaction which were remarkably associated with the tumorigenesis and progression of cancers using betweenness centrality analysis. CONCLUSION: These findings offer novel insights into the mechanism of 9R-P201 in HepG2 cells and provide new opportunities for the future 9R-P201-based drug development and the treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Neoplasias Hepáticas/genética , Peptídeos/farmacologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética
14.
PLoS One ; 12(5): e0176823, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28464025

RESUMO

Psoriasis is a chronic and persistent inflammatory skin disease seriously affecting the quality of human life. In this study, we reported an ancient formula of Chinese folk medicine, the natural plant antimicrobial solution (PAMs) for its anti-inflammatory effects and proposed the primary mechanisms on inhibiting the inflammatory response in TNF-α/IFN-γ-induced HaCaT cells and imiquimod-induced psoriasis-like skin disease mouse model. Two main functional components of hydroxysafflor Yellow A and allantoin in PAMs were quantified by HPLC to be 94.2±2.2 and 262.9±12.5 µg/mL respectively. PAMs could significantly reduce the gene expression and inflammatory cytokines production of Macrophage-Derived Chemokine (MDC), IL-8 and IL-6 in TNF-α/IFN-γ-induced HaCaT cells. PAMs also significantly ameliorates the psoriatic-like symptoms in a mouse model with the evaluation scores for both the single (scales, thickness, erythema) and cumulative features were in the order of blank control < Dexamethasone < PAMs < 50% ethanol < model groups. The results were further confirmed by hematoxylin-eosin staining, RT-qPCR and immunohistochemistry. The down-regulated gene expression of IL-8, TNF-α, ICAM-1 and IL-23 in mouse tissues was consistent with the results from those of the HaCaT cells. The inhibition of psoriasis-like skin inflammation by PAMs was correlated with the inactivation of the translocation of P65 protein into cellular nucleus, indicating the inhibition of the inflammatory NF-κB signaling pathway. Taken together, these findings suggest that PAMs may be a promising drug candidate for the treatment of inflammatory skin disorders, such as psoriasis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fitoterapia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Aminoquinolinas , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/química , Feminino , Humanos , Imiquimode , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia
15.
Sci Rep ; 7: 41140, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120939

RESUMO

Rs1344706 in the the zinc finger protein 804A (ZNF804A) gene has been identified to be associated with schizophrenia and bipolar disorder (BD) in Europeans. However, whether rs1344706 is associated with schizophrenia in Chinese populations remains inconclusive; furthermore, the association between rs1344706 and BD in Chinese populations has been rarely explored. To explore the association between rs1344706 and schizophrenia/BD in Chinese populations, we genotyped rs1344706 among 1128 Chinese subjects (537 patients with BD and 591 controls) and found that rs1344706 showed marginal allelic association with BD (P = 0.028) with T-allele being more prevalent in cases than that in controls (OR = 1.19, 95% CI 1.03-1.37). Meta-analysis of rs1344706 by pooling all available data showed that rs1344706 was significantly associated with BD (P = 0.001). Besides, positive association of rs1344706 with schizophrenia was observed in Northern Chinese (P = 0.005). Furthermore, ZNF804A is highly expressed in human and mouse brains, especially in prenatal stage.


Assuntos
Transtorno Bipolar/genética , Fatores de Transcrição Kruppel-Like/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Adulto , China , Feminino , Humanos , Masculino
16.
Eur J Pharmacol ; 796: 175-189, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28012972

RESUMO

Overexpression of FoxM1 was closely related to the proliferation, metastasis, chemo-resistance and poor prognosis of various cancers. FoxM1 was regarded as the Achilles' heel of cancer and a potential target for anti-cancer drug discovery. We previously obtained several high affinity peptides from the phage random library against the DNA binding domain of FoxM1c (FoxM1c-DBD) protein. Here in this paper, we found that 9R-P201, one of the novel peptides, showed stronger inhibition to HepG2 cancer cells than those of DU145, HUVEC and L-02 cells with an IC50 of 43.6µg/ml (13.1µM). The peptide was highly effective to liver cancer cells with an IC50 for L-02 cells of 2855.9µg/ml. We confirmed that 9R-P201 aggregated in the cell nucleus and the expression of FoxM1 was significantly down-regulated at both transcriptional and translational levels in HepG2 cells, leading to the suppression of cell proliferation, migration, angiogenesis, and induction of apoptosis. Whole genomic RNA sequencing analysis revealed that 357 genes were significantly and differentially expressed, most of them were enriched in cancer-associated biological processes. Finally, treatment of HepG2 xenografts with 9R-P201 resulted in growth inhibition and down-regulation of foxM1 expression in tumors. Collectively, our findings suggested that 9R-P201 could strongly inhibit the viability, proliferation and migration of liver cancer HepG2 cells and induce apoptosis by down-regulation of FoxM1 and regulation of related gene expression in signal transduction passways. Thus, 9R-P201 holds great potential as a lead anti-cancer drug targeting FoxM1.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Proteína Forkhead Box M1/metabolismo , Neoplasias Hepáticas/patologia , Peptídeos/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Camundongos , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Microb Cell Fact ; 15(1): 215, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28031033

RESUMO

BACKGROUND: ACEII transcription factor plays a significant role in regulating the expression of cellulase and hemicellulase encoding genes. Apart from ACEII, transcription factors such as XYR1, CRE1, HAP2/3/5 complex and ACEI function in a coordinated pattern for regulating the gene expression of cellulases and hemicellulases. Studies have demonstrated that ACEII gene deletion results in decreased total cellulase and xylanase activities with reduced transcript levels of lignocellulolytic enzymes. RESULTS: In this study, we have successfully transformed the ACEII transcription factor encoding gene in Trichoderma reesei to significantly improve its degrading abilities. Transformation experiments on parental strain T. reesei QM9414 has resulted in five genetically engineered strains T/Ace2-2, T/Ace2-5, T/Ace2-8, T/Ace5-4 and T/Ace10-1. Among which, T/Ace2-2 has exhibited significant increase in enzyme activity by twofolds, when compared to parental strain. The T/Ace2-2 was cultured on growth substrates containing 2% bark supplemented with (a) sugar free + MA medium (b) glucose + MA medium and (c) xylose + MA medium. The bark degradation efficiency of genetically modified T/Ace2-2 strain was assessed by analyzing the xylitol production yield using HPAEC. By 6th day, about 10.52 g/l of xylitol was produced through enzymatic conversion of bark (2% bark + MA + xylose) by the T/Ace2-2 strain and by 7th day the conversion rate was found to be 0.21 g/g. Obtained results confirmed that bark growth medium supplemented with D-xylose has profoundly increased the conversion rate of bark by T/Ace2-2 strain when compared to sugar free and glucose supplemented growth media. Results obtained from scanning electron microscopy has endorsed our current results. Bark samples inoculated with T/Ace2-2 strain has showed large number of degraded cells with clearly visible cavities and fractures, by exposing the microfibrillar interwoven complex. CONCLUSION: We propose a cost effective and ecofriendly method for the degradation of lignocellulosic biomass such as bark to produce xylitol by using genetically modified T. reesei. Efficient conversion rate and production yield obtained in our current study provides a great scope for the xylitol industries, as our method bypasses the pretreatment of bark achieving clean and low-cost xylitol production.


Assuntos
Endo-1,4-beta-Xilanases/biossíntese , Casca de Planta/metabolismo , Casca de Planta/microbiologia , Transativadores/metabolismo , Trichoderma/enzimologia , Xilitol/biossíntese , Recombinação Genética , Transativadores/genética , Trichoderma/genética
18.
Am J Med Genet B Neuropsychiatr Genet ; 171(6): 896-903, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27260792

RESUMO

Major depressive disorder (MDD) is one of the most common psychiatric disorders with a relatively high heritability (35-40%). Though rs1006737 in the CACNA1C gene showed significant association with MDD in a British large-scale candidate association study, most of the replication analyses with relatively small sample size reported negative association. Moreover, this locus has never been identified in previous genome-wide association studies (GWAS) for MDD. Here, we conducted a comprehensive meta-analysis of the association between CACNA1C variants and MDD risk by combining all published data. Genetic data from one European GWAS and five individual follow-up studies, which include up to 12,629 patients of MDD and 28,653 controls, that is, the largest sample size on CACNA1C to date, were collected. Rs1006737 showed significant association with MDD in the fixed-effect model (Z = 2.56, P = 0.011, OR = 1.08, 95%CI = 1.04-1.12) and the association remained after reanalyzing the data according to ethnicity. We additionally analyzed other 25 SNPs, genotyped in only one replication study, across the CACNA1C locus, and found that two SNPs, rs4765905 (P = 0.041, OR = 1.05, 95%CI 1.00-1.09) and rs4765937 (P = 0.025, OR = 1.05, 95%CI 1.01-1.09) showed nominal association with MDD, while rs2239073 (P = 0.002, OR = 1.07, 95%CI 1.02-1.11) exhibited significant association with MDD, which survived from multiple corrections. Our study provides support for positive association between CACNA1C and MDD; however, the current data suggest the necessity of replication analyses in a larger-scale sample. © 2016 Wiley Periodicals, Inc.


Assuntos
Canais de Cálcio Tipo L/genética , Transtorno Depressivo Maior/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Feminino , Predisposição Genética para Doença/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , População Branca
19.
J Psychiatr Res ; 79: 50-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27174400

RESUMO

Human telomeres consist of tandem nucleotide repeats (TTAGGG) and associated proteins, and telomere length (TL) is reduced progressively with cell division over the lifespan. Telomere erosion might be accelerated or prevented to varying degrees when exposure to serious medical illnesses. In previous studies, an association between TL decrease and schizophrenia has been extensively reported; however, the results remain largely controversial. To further investigate TL in schizophrenia patients and reconcile this controversy, we first measured leucocyte TL (LTL) in our samples (52 paranoid schizophrenia, 89 non-paranoid patients and 120 controls), and then conducted a comprehensive meta-analysis of the existing results of LTL in patients of schizophrenia compared to healthy subjects. Totally, 11 studies encompassing 1243 patients of schizophrenia and 1274 controls were included in the final meta-analysis model. In our samples, significant reduction of LTL in paranoid schizophrenia was observed compared to controls (F = 50.88, P < 0.001); whereas there was no significant difference in LTL between non-paranoid schizophrenia and controls (F = 0.842, P = 0.360). For meta-analysis, random-effects model showed significant LTL decrease in patients of schizophrenia when compared to controls (Z = 2.07, P = 0.039, SMD = -0.48, 95% CI = -0.94 to -0.03). Moreover, a marginal decrease in LTL was observed in medicated patients (Z = 1.92, P = 0.055, SMD = -0.58, 95% CI = -1.18-0.01) and those patients with poor response to antipsychotics (Z = 1.76, P = 0.078, SMD = -0.60, 95% CI = -1.27-0.07). In conclusion, we observed significant reduction of LTL in individuals with schizophrenia compared with controls. However, all the studies included in the meta-analysis were cross-sectional, and better controlled long-term studies are needed to replicate this result.


Assuntos
Leucócitos/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encurtamento do Telômero , Humanos
20.
Zhongguo Zhong Yao Za Zhi ; 40(8): 1453-8, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26281578

RESUMO

The study is aimed to ensure the quality and safety of medicinal plants by using ITS2 DNA barcode technology to identify Corydalis boweri, Meconopsis horridula and their close related species. The DNA of 13 herb samples including C. boweri and M. horridula from Lhasa of Tibet was extracted, ITS PCR were amplified and sequenced. Both assembled and web downloaded 71 ITS2 sequences were removed of 5. 8S and 28S. Multiple sequence alignment was completed and the intraspecific and interspecific genetic distances were calculated by MEGA 5.0, while the neighbor-joining phylogenetic trees were constructed. We also predicted the ITS2 secondary structure of C. boweri, M. horridula and their close related species. The results showed that ITS2 as DNA barcode was able to identify C. boweri, M. horridula as well as well as their close related species effectively. The established based on ITS2 barcode method provides the regular and safe detection technology for identification of C. boweri, M. horridula and their close related species, adulterants and counterfeits, in order to ensure their quality control, safe medication, reasonable development and utilization.


Assuntos
Corydalis/classificação , Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Papaveraceae/classificação , Sequência de Bases , China , Corydalis/química , Corydalis/genética , DNA de Plantas/química , DNA Espaçador Ribossômico/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Papaveraceae/química , Papaveraceae/genética , Filogenia , Plantas Medicinais/química , Plantas Medicinais/classificação , Plantas Medicinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...