Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1408926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774502

RESUMO

Bidirectional trans-kingdom RNA silencing, a pivotal factor in plant-pathogen interactions, remains less explored in plant host-parasite dynamics. Here, using small RNA sequencing in melon root systems, we investigated microRNA (miRNA) expression variation in resistant and susceptible cultivars pre-and post-infection by the parasitic plant, broomrape. This approach revealed 979 known miRNAs and 110 novel miRNAs across 110 families. When comparing susceptible (F0) and resistant (R0) melon lines with broomrape infection (F25 and R25), 39 significantly differentially expressed miRNAs were observed in F25 vs. F0, 35 in R25 vs. R0, and 5 in R25 vs. F25. Notably, two miRNAs consistently exhibited differential expression across all comparisons, targeting genes linked to plant disease resistance. This suggests their pivotal role in melon's defense against broomrape. The target genes of these miRNAs were confirmed via degradome sequencing and validated by qRT-PCR, ensuring reliable sequencing outcomes. GO and KEGG analyses shed light on the molecular functions and pathways of these differential miRNAs. Furthermore, our study unveiled four trans-kingdom miRNAs, forming a foundation for exploring melon's resistance to broomrape.

2.
Food Sci Nutr ; 10(11): 3608-3620, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36348797

RESUMO

Aroma is an important factor that guides consumers in purchasing and is thus very important in melon research. To our knowledge, the number of studies with a focus on the aroma differences of the same melon variety in different production areas is largely limited. In this study, the differences in aroma components of "Nasmi" melons from two different production regions were analyzed using gas-phase ion migration spectroscopy. Transcriptome sequencing was performed for analyzing fragrance-related genes. Results showed that there were significant differences in the aroma components between products from the two regions. The total amount of aroma compounds from the Turpan region (TT) was 1.7 times higher than that from the Altay region (AT). Through the analysis of transcriptome data, the key genes encoding melon aroma components in different regions were identified as ethanol dehydrogenase, 3-hydroxyl-coenzyme A (CoA) dehydrogenase, acyl-CoA oxidase, long-chain acyl-CoA synthetase, acetaldehyde dehydrogenase, and acetyl-CoA acyltransferase. Real-time quantitative polymerase chain reaction (RT-qPCR) showed that the verified genes were similar to the transcriptome. In this study, the main aroma components of the same variety of melon that differed in different production areas and the key genes causing these differences were identified. In addition, the aroma metabolic pathway of melon in different regions was preliminarily elucidated. These results could provide a theoretical basis for further study of the formation mechanism of melon aroma and breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...