Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174337

RESUMO

Docosahexaenoic acid (DHA) is highly enriched in the brain, and is essential for normal brain development and function. However, evidence suggests that currently used supplements, such as fish oil, do not significantly increase brain DHA levels. Therefore, this study aimed to investigate whether combined fish oil and choline supplementation could affect the type and enrich the content of DHA in the brain. The results revealed that the combined intake of fish oil and choline upregulated the expression of key transporters and receptors, including MFSD2A, FATP1, and FABP5, which increased the uptake of DHA in the brain. Additionally, this supplementation improved the synthesis and release of acetylcholine in the brain, which, in turn, enhanced the learning and memory abilities of mice. These findings suggest that the combined intake of fish oil and choline improves the bioavailability of DHA in the brain.

2.
ACS Appl Mater Interfaces ; 7(4): 2760-71, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25580622

RESUMO

Dye-sensitized solar cells (DSSCs) with cobalt electrolytes have gained increasing attention. In this Research Article, two new pyrido[3,4-b]pyrazine-based sensitizers with different cores of bulky donors (indoline for DT-1 and triphenylamine for DT-2) were designed and synthesized for a comparative study of their photophysical and electrochemical properties and device performance and were also analyzed through density functional theory calculations. The results of density function theory calculations reveal the limited electronic communication between the biphenyl branch at the cis-position of N-phenylindoline and the indoline core, which could act as an insulating blocking group and inhibit the dye aggregation and charge recombination at the interface of TiO2/dye/electrolyte. As expected, DSSCs based on DT-1 with cobalt redox electrolyte gained a higher photoelectric conversion efficiency of 8.57% under standard AM 1.5 G simulated sunlight, with Jsc = 16.08 mA cm(-2), Voc = 802 mV, and FF = 0.66. Both electrochemical impedance spectroscopy (EIS) and intensity-modulated photovoltage spectroscopy (IMVS) suggest that charge recombination in DSSCs based on DT-1 is much less than that in their counterparts of DT-2, owing to the bigger donor size and the insulating blocking branch in the donor of DT-1.

3.
Angew Chem Int Ed Engl ; 51(39): 9873-6, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22936649

RESUMO

The electron acceptor 2-(1,1-dicyanomethylene) rhodanine is a promising alternative to cyanoacrylic acid as an anchoring group for organic dyes. For example, the RD-II-based dye-sensitized solar cell has an overall conversion efficiency of 7.11 % and long-term stability.

4.
Chem Asian J ; 7(5): 982-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22328182

RESUMO

Two new benzotriazole-bridged sensitizers are designed and synthesized (BTA-I and BTA-II) containing a furan moiety for dye-sensitized solar cells (DSSCs). Two corresponding dyes (BTA-III and BTA-IV) with a thiophene spacer were also synthesized for comparison. All of these dyes performed as sensitizers for DSSCs, and the photovoltaic performance data of these benzotriazole-bridged dyes showed a high open-circuit voltage (V(oc): 804-834 mV). Among the four dyes, DSSCs based on BTA-II, with a furan moiety and branched alkyl chain, showed the highest V(oc) (834 mV), a photocurrent density (J(sc)) of 12.64 mA cm(-2), and a fill factor (FF) of 0.64, corresponding to an overall conversion efficiency (η) of 6.72%. Most importantly, long-term stability of the BTA-I-IV-based DSSCs with ionic-liquid electrolytes under 1000 h light-soaking was demonstrated, and BTA-II exhibited better photovoltaic performance of up to 5.06% power conversion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...