Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202407612, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007237

RESUMO

The synthesis of multicarbon (C2+) products remains a substantial challenge in sustainable CO2 electroreduction owing to the need for sufficient current density and faradaic efficiency alongside carbon efficiency. Herein, we demonstrate ampere-level high-efficiency CO2 electroreduction to C2+ products in both neutral and strongly acidic (pH = 1) electrolytes using a hierarchical Cu hollow-fiber penetration electrode (HPE). High concentration of K+ could concurrently suppress hydrogen evolution reaction and facilitate C-C coupling, thereby promoting C2+ production in strong acid. By optimizing the K+ and H+ concentration and CO2 flow rate, a faradaic efficiency of 84.5% and a partial current density as high as 3.1 A cm-2 for C2+ products, alongside a single-pass carbon efficiency of 81.5% and stable electrolysis for 240 h were demonstrated in a strong acidic solution of H2SO4 and KCl (pH = 1). Experimental measurements and density functional theory simulations suggested that tensile-strained Cu HPE enhances the asymmetric C-C coupling to steer the selectivity and activity of C2+ products.

2.
Nat Commun ; 15(1): 2159, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461315

RESUMO

CO2 hydrogenation to chemicals and fuels is a significant approach for achieving carbon neutrality. It is essential to rationally design the chemical structure and catalytic active sites towards the development of efficient catalysts. Here we show a Ce-CuZn catalyst with enriched Cu/Zn-OV-Ce active sites fabricated through the atomic-level substitution of Cu and Zn into Ce-MOF precursor. The Ce-CuZn catalyst exhibits a high methanol selectivity of 71.1% and a space-time yield of methanol up to 400.3 g·kgcat-1·h-1 with excellent stability for 170 h at 260 °C, comparable to that of the state-of-the-art CuZnAl catalysts. Controlled experiments and DFT calculations confirm that the incorporation of Cu and Zn into CeO2 with abundant oxygen vacancies can facilitate H2 dissociation energetically and thus improve CO2 hydrogenation over the Ce-CuZn catalyst via formate intermediates. This work offers an atomic-level design strategy for constructing efficient multi-metal catalysts for methanol synthesis through precise control of active sites.

3.
ACS Appl Mater Interfaces ; 16(4): 4600-4605, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38242173

RESUMO

Photocatalytic conversion of methane (CH4) to value-added chemicals using H2O as the oxidant under mild conditions is a desired sustainable pathway for synthesizing commodity chemicals. However, controlling product selectivity while maintaining high product yields is greatly challenging. Herein, we develop a highly efficient strategy, based on the precise control of the types of nitrogen dopants, and the design of photocatalysts, to achieve high selectivity and productivity of oxygenates via CH4 photocatalytic conversion. The primary product (methanol) is obtained in a high yield of 159.8 µmol·g-1·h-1 and 47.7% selectivity, and the selectivity of oxygenate compounds reached 92.5%. The unique hollow porous structure and substituted nitrogen sites of nitrogen-doped TiO2 synergistically promote its photo-oxidation performance. Furthermore, in situ attenuated total reflectance Fourier transform infrared spectroscopy provides direct evidence of the key intermediates and their evolution for producing methanol and multicarbon oxygenates. This study provides insights into the mechanism of photocatalytic CH4 conversion.

4.
ACS Omega ; 8(49): 46569-46576, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107883

RESUMO

As one of the most important derivatives of propylene, the production of propylene oxide (PO) is severely restricted. The traditional chlorohydrin process is being eliminated due to environmental concerns, while processes such as Halcon and hydrogen peroxide epoxidation are limited by cost and efficiency, making it difficult to meet market demand. Therefore, achieving PO production through clean and efficient technologies has received extensive attention, and halogen-mediated electrochemical epoxidation of alkene is considered to be a desirable technology for the production of alkylene oxide. In this work, we used electrochemical methods to synthesize PO in halogen-mediated systems based on a RuO2-loaded Ti (RuO2/Ti) anode and screened out two potential mediated systems of chlorine (Cl) and bromine (Br) for the electrosynthesis of PO. At a current density of 100 mA·cm-2, both Cl- and Br-mediated systems delivered PO Faradaic efficiencies of more than 80%. In particular, the Br-mediated system obtained PO Faradaic efficiencies of more than 90% at lower potentials (≤1.5 V vs RHE) with better electrode structure durability. Furthermore, detailed product distribution investigations and DFT calculations suggested hypohalous acid molecules as key reaction intermediates in both Cl- and Br-mediated systems. This work presents a green and efficient PO production route with halogen-mediated electrochemical epoxidation of propylene driven by renewable electricity, exhibiting promising potential to replace the traditional chlorohydrin process.

5.
Biomed Opt Express ; 14(9): 4644-4659, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791287

RESUMO

The Monte Carlo (MC) method is one of the most widely used numerical tools to model the light interaction with tissue. However, due to the low photon collection efficiency and the need to simulate the entire emission spectrum, it is computationally expensive to simulate the full-spectrum backscattered diffuse reflectance (F-BDR). Here, we propose an acceleration scheme based on importance sampling (IS). We derive the biasing sampling function tailored for simulating BDR based on the two-term scattering phase function (TT). The parameters of the TT function at different wavelengths are directly obtained by fitting the Mie scattering phase function. Subsequently, we incorporate the TT function and its corresponding biased function into the redefined IS process and realize the accelerated simulation of F-BDR. Phantom simulations based on the Fourier-domain optical coherence tomography (FD-OCT) are conducted to demonstrate the efficiency of the proposed method. Compared to the original simulator without IS, our proposed method achieves a 373× acceleration in simulating the F-BDR of the multi-layer phantom with a relative mean square error (rMSE) of less than 2%. Besides, by parallelly computing A-lines, our method enables the simulation of an entire B-scan in less than 0.4 hours. To our best knowledge, it is the first time that a volumetric OCT image of a complex phantom is simulated. We believe that the proposed acceleration method can be readily applied to fast simulations of various F-BDR-dependent applications. The source codes of this manuscript are also publicly available online.

6.
Angew Chem Int Ed Engl ; 62(47): e202313029, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37823848

RESUMO

Low-nuclear site catalysts with dual atoms have the potential for applications in energy and catalysis chemistry. Understanding the formation mechanism of dual metal sites is crucial for optimizing local structures and designing desired binuclear sites catalysts. In this study, we demonstrate for the first time the formation process of dual atoms through the pyrolysis of the interface of a double framework using Zn atoms in metal-organic frameworks and Co atoms in covalent organic frameworks. We unambiguously revealed that the cooling stage is the key point to form the binuclear sites by employing the in situ synchrotron radiation X-ray absorption spectrum technique. The binuclear site catalysts show higher activity and selectivity than single dispersed atom catalysts for electrocatalytic oxygen reduction. This work guides us to synthesize and optimize the various binuclear sites for extensive catalytic applications.

7.
Nanotechnology ; 34(44)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37506682

RESUMO

The application of electrochemical hydrodechlorination has been impeded due to the low utilization and activity of Pd catalyst. Herein, a series of Pd catalysts were prepared via the controllable evolution of Zn state during the pyrolysis of ZIF-8 nanosheet. Various forms of Pd with different chemical surroundings were generated upon the combined use of galvanic displacement and ion exchange process. Electrocatalytic hydrodechlorination of 4-chlorophenol was performed and the electrocatalytic hydrodechlorination efficiency of Pd/CN reaches 100% within 3 h at extra low Pd concentration. The coexistence of zero-valent Pd (Pd0) and nitrogen coordinated Pd (Pd-N) was verified by XAFS which provide multiple active sites for focusing on adsorbing H* and cracking C-Cl respectively. The synergetic effect between different chemical state of Pd for efficient hydrodechlorination of chloroaromatics and scheme for dexterous preparation of Pd based electrocatalyst are proposed and discussed.

8.
Small ; 19(35): e2301338, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183302

RESUMO

Electroreduction of CO2 to CO is a promising route for greenhouse gas resource utilization, but it still suffers from impractical current density and poor durability. Here, a nanosheet shell (NS) vertically standing on the Ag hollow fiber (NS@Ag HF) surface formed by electrochemical surface reconstruction is reported. As-prepared NS@Ag HF as a gas penetration electrode exhibited a high CO faradaic efficiency of 97% at an ultra-high current density of 2.0 A cm-2 with a sustained performance for continuous >200 h operation. The experimental and theoretical studies reveal that promoted surface electronic structures of NS@Ag HF by the nanosheets not only suppress the competitive hydrogen evolution reaction but also facilitate the CO2 reduction kinetics. This work provides a feasible strategy for fabricating robust catalysts for highly efficient and stable CO2 reduction.

9.
ACS Appl Mater Interfaces ; 15(8): 10785-10794, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802488

RESUMO

Transition metal catalyst-based electrocatalytic CO2 reduction is a highly attractive approach to fulfill the renewable energy storage and a negative carbon cycle. However, it remains a great challenge for the earth-abundant VIII transition metal catalysts to achieve highly selective, active, and stable CO2 electroreduction. Herein, bamboo-like carbon nanotubes that anchor both Ni nanoclusters and atomically dispersed Ni-N-C sites (NiNCNT) are developed for exclusive CO2 conversion to CO at stable industry-relevant current densities. Through optimization of gas-liquid-catalyst interphases via hydrophobic modulation, NiNCNT exhibits as high as Faradaic efficiency (FE) of 99.3% for CO formation at a current density of -300 mA·cm-2 (-0.35 V vs reversible hydrogen electrode (RHE)), and even an extremely high CO partial current density (jCO) of -457 mA·cm-2 corresponding to a CO FE of 91.4% at -0.48 V vs RHE. Such superior CO2 electroreduction performance is ascribed to the enhanced electron transfer and local electron density of Ni 3d orbitals upon incorporation of Ni nanoclusters, which facilitates the formation of the COOH* intermediate.

10.
Angew Chem Int Ed Engl ; 61(42): e202210432, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36056915

RESUMO

Electrochemical conversion of CO2 into valuable feedstocks is a promising strategy for carbon neutrality. However, it remains a challenge to possess a large current density, a high faradaic efficiency and excellent stability for practical applications of CO2 utilization. Herein, we report a facile tactic that enables exceedingly efficient CO2 electroreduction to CO by virtue of low-coordination chloride ion (Cl- ) adsorption on a silver hollow fiber (Ag HF) electrode. A CO faradaic efficiency of 92.3 % at a current density of one ampere per square centimeter (1 A cm-2 ) in 3.0 M KCl with a sustained performance observed during a 150-hour test was achieved, which is better than state-of-the-art electrocatalysts. The electrochemical results and density functional theory (DFT) calculations suggested a low-coordination Cl- adsorption on surface of Ag HF, which not only suppressed the competitive hydrogen evolution reaction (HER), but also facilitated the CO2 reduction kinetics.

11.
Biomed Opt Express ; 13(12): 6317-6334, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589559

RESUMO

Monte Carlo (MC) simulation has been widely used to study imaging procedures, including Fourier-domain optical coherence tomography (FD-OCT). Despite the broadband nature of FD-OCT, the results obtained at a single wavelength are often used in previous studies. Some wavelength-relied imaging applications, such as spectroscopic OCT (S-OCT), are unlikely to be simulated in this way due to the lack of information from the entire spectrum. Here, we propose a novel simulator for full-wavelength MC simulation of FD-OCT. All wavelengths within the emission spectrum of the light source will be simulated, and the optical properties derived from Mie theory will be applied. We further combine the inverse discrete Fourier transform (IDFT) with a probability distribution-based signal pre-processing to combat the excessive noises in the OCT signal reconstruction, which is caused by the non-uniform distribution of the scattering events at different wavelengths. Proof-of-concept simulations are conducted to show the excellent performance of the proposed simulator on signal reconstruction and optical properties extraction. Compared with the conventional method, the proposed simulator is more accurate and could better preserve the wavelength-dependent features. For example, the mean square error (MSE) computed between the backscattering coefficient extracted by the proposed simulator and the ground truth is 0.11, which is far less than the value (7.67) of the conventional method. We believe this simulator could be an effective tool to study the wavelength dependency in FD-OCT imaging as well as a preferred solution for simulating spectroscopic OCT.

12.
Yi Chuan Xue Bao ; 29(3): 250-4, 2002.
Artigo em Chinês | MEDLINE | ID: mdl-12182081

RESUMO

A total of thirty-five restorer lines of hybrid rice (Oryza sativa L.) were analyzed by twenty-five SSR (simple sequence repeats) primer pairs, which disperse on 12 chromosomes in rice. Those primers detected 65 alleles among 35 restorer lines of hybrid rice. Per primer pair detected 2.6 alleles on the average. PIC (polymorphism index content) values ranged from 0.206 to 0.682. PIC value is 0.414 on the average. The result from cluster analysis shows that hybrid rice restorer lines have abundant resource in China, but the genetic diversity is small and the genetic background is vulnerable among them. The utilization of rice heterosis was limited seriously.


Assuntos
Hibridização Genética/genética , Repetições de Microssatélites , Oryza/genética , Variação Genética
13.
Yi Chuan ; 24(3): 283-7, 2002 May.
Artigo em Chinês | MEDLINE | ID: mdl-16126683

RESUMO

A total of 248 arbitrary 10-mer oligonucleotide primers were screened using RAPD (random amplified polymorphic DNA) techniques with the genome DNA of three groups of three-line hybrid rice and their parents. Thirteen primers produced 43 polymorphism fragments. Six primers of them produced 20 obviously repeatable polymorphic markers among rice lines tested. Using this RAPD markers,the hybrid rice combinations (sterile-line, maintainer-line, restorer-line and F1) can be effectively identified, and the genetic relationship among them can be shown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...