Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 173142, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744395

RESUMO

Marine fuel combustion from shipping releases SO2 and forms sulfate particles, which may alter low cloud characteristics. A series of strategies were implemented to control the sulfur content of ship fuel oil from 2018 to 2020, offering insights into the effects of the ship fuel oil transition on sulfur-related pollutants and the consequent cloud condensation nuclei (CCN) in the atmosphere. Compared to 2018 in the southeast China waters, shipping SO2 emission decreased by 78 % in 2020, resulting in a 76 % reduction in ship-related total sulfur concentration, and a decrease of 54 % in CCN number concentration under supersaturation 0.2 % (CCN0.2) contributed by shipping. The response of CCN0.2 to ship-related sulfate modification is more pronounced in relatively clean environments than polluted environments, highlighting the uneven changes in coastal CCN along the Eastern China Sea induced by the ship fuel policies. CCN can trigger the formation of cloud droplets, 2020 fuel regulation may have and will reduce the cooling radiative forcing effect with strong spatial heterogeneity. The study provides insights into the variations in coastal atmospheric sulfur-related pollutants and CCN in uneven response to changes in ship fuel oil, prompting the need for further comprehensive assessments of the climate effects resulting from potential shifts in ship fuel use in the future.

2.
Environ Sci Technol ; 57(44): 16999-17010, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37856868

RESUMO

In early 2020, two unique events perturbed ship emissions of pollutants around Southern China, proffering insights into the impacts of ship emissions on regional air quality: the decline of ship activities due to COVID-19 and the global enforcement of low-sulfur (<0.5%) fuel oil for ships. In January and February 2020, estimated ship emissions of NOx, SO2, and primary PM2.5 over Southern China dropped by 19, 71, and 58%, respectively, relative to the same period in 2019. The decline of ship NOx emissions was mostly over the coastal waters and inland waterways of Southern China due to reduced ship activities. The decline of ship SO2 and primary PM2.5 emissions was most pronounced outside the Chinese Domestic Emission Control Area due to the switch to low-sulfur fuel oil there. Ship emission reductions in early 2020 drove 16 to 18% decreases in surface NO2 levels but 3.8 to 4.9% increases in surface ozone over Southern China. We estimated that ship emissions contributed 40% of surface NO2 concentrations over Guangdong in winter. Our results indicated that future abatements of ship emissions should be implemented synergistically with reductions of land-borne anthropogenic emissions of nonmethane volatile organic compounds to effectively alleviate regional ozone pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Óleos Combustíveis , Ozônio , Poluentes Atmosféricos/análise , Navios , Emissões de Veículos/análise , Material Particulado/análise , Dióxido de Nitrogênio , Poluição do Ar/análise , China , Ozônio/análise , Enxofre , Monitoramento Ambiental/métodos
3.
Sci Total Environ ; 879: 162892, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36934943

RESUMO

The Western Pacific Ocean (the WPO), as one of the busiest shipping areas in the world, holds a complex water traffic network. In 2020, the International Maritime Organization (IMO) low-sulfur fuel regulations were implemented globally, while the COVID-19 outbreak influenced shipping activities together. This study aimed to assess the combined impact of epidemics and low-sulfur fuel policies on ship emissions, as well as their environmental effects on the WPO. The ship emission model based on the Automatic Identification System (AIS) data was applied to analyze the monthly emission variations during 2018-2020. It was found that the epidemic had obvious diverse influences on the coastal ports in the WPO. Overall, shipping emissions declined by 15 %-30 % in the first half of 2020 compared with those in 2019 due to the COVID-19 lockdown, whereas they rebounded in the second half as a result of trade recovery. The pollutants discharged per unit of cargo by ships rose after the large-range lockdown. China's multiphase domestic emission control areas (DECAs) and the IMO global low-sulfur fuel regulation have greatly reduced SO2 emissions from ships and caused them to "bypass and come back" to save fuel costs around emission control areas from 2018 to 2020. Based on satellite data and land-based measurements, it was found that the air quality over sea water and coastal cities has shown a positive response to changes in ship-emitted NOx and SO2. Our results reveal that changes in shipping emissions during typical periods, depending on their niches in the complex port traffic network, call for further efforts for cleaner fuel oils, optimized ECA and ship lane coordination in the future. Shipping related air pollutions during the later economic recovery also needs to be addressed after international scale standing-by events.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Epidemias , Óleos Combustíveis , Humanos , Poluentes Atmosféricos/análise , Navios , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Poluição do Ar/análise , Enxofre , Emissões de Veículos/análise , Material Particulado/análise
4.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234516

RESUMO

Herein, cobalt-reduced graphene oxide (rGO) catalyst was synthesized with a practical impregnation-calcination approach for the selective hydrodeoxygenation (HDO) of guaiacol to cyclohexanol. The synthesized Co/rGO was characterized by transmission electron microscopy (TEM), high-angle annular dark-field scanning TEM (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), and H2 temperature-programmed reduction (H2-TPR) analysis. According to the comprehensive characterization results, the catalyst contains single Co atoms in the graphene matrix and Co oxide nanoparticles (CoOx) on the graphene surface. The isolated Co atoms embedded in the rGO matrix form stable metal carbides (CoCx), which constitute catalytically active sites for hydrogenation. The rGO material with proper amounts of N heteroatoms and lattice defects becomes a suitable graphene material for fabricating the catalyst. The Co/rGO catalyst without prereduction treatment leads to the complete conversion of guaiacol with 93.2% selectivity to cyclohexanol under mild conditions. The remarkable HDO capability of the Co/rGO catalyst is attributed to the unique metal-acid synergy between the CoCx sites and the acid sites of the CoOx nanoparticles. The CoCx sites provide H while the acid sites of CoOx nanoparticles bind the C-O group of reactants to the surface, allowing easier C-O scission. The reaction pathways were characterized based on the observed reaction-product distributions. The effects of the process parameters on catalyst preparation and the HDO reaction, as well as the reusability of the catalyst, were systematically investigated.

5.
Sci Total Environ ; 728: 138454, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32570333

RESUMO

This work studied the impacts of ship emissions at a high temporal resolution on the real-time concentrations of PM2.5, NO2, and SO2 in urban harbors and coastal sea areas, taking the Yangtze River Delta (YRD) as an example. The WRF-Chem model with 3 nested grids and ship emissions derived from an automatic identification system (AIS) were combined to simulate the air quality. The AIS data showed significant temporal fluctuations in ship emissions, with hourly mean fluxes of approximately 1082.41 ± 444.41 and 593.55 ± 404.95 g/h/km2 near ports and in the channel waters of the YRD, respectively. The monthly mean contributions of shipping emissions reached 80.72% (2.15 ppbv) and 81.79% (8.79 ppbv) to ambient SO2 and NO2 in Ningbo Port, and 10.61% (6.96 µg/m3) to PM2.5 in Shanghai Port, respectively, regions with dense ship traffic. The relative differences in the PM2.5, SO2, and NO2 concentrations modeled using monthly and hourly ship emissions accounted for -10-15%, -10-30%, and - 5-30%, respectively. Compared with cruise- and land-based measurements, the simulations using hourly emissions were in much better agreement with the observations than those using monthly emissions and appropriately captured some air pollutant concentration peaks. Simulations during shipping-related periods with hourly ship emissions improved the normalized mean bias (NMBs) from -43.03%, 301.49%, and 223.02% to -27.28%, 90.45%, and 167.52%, respectively, for PM2.5, SO2, and NO2, highlighting the importance of using ship emissions with a fine temporal resolution. Our study showed that ignoring hourly fluctuations in ship emissions during air quality modeling leads to considerable uncertainties, especially in coastal urban areas and harbors with high ship activities. These results imply that data with a high temporal resolution, such as hourly ship emissions, are necessary to understand the realistic impacts of shipping traffic and to implement more precise control policies to improve coastal air quality.

6.
Nat Commun ; 10(1): 996, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824847

RESUMO

While numerous single atoms stabilized by support surfaces have been reported, the synthesis of in-situ reduced discrete metal atoms weakly coordinated and stabilized in liquid media is a more challenging goal. We report the genesis of mononuclear electron deficient Pt1(0) by reducing H2PtCl6 in liquid polydimethylsiloxane-polyethylene glycol (PDMS-PEG) (Pt1@PDMS-PEG). UV-Vis, far-IR, and X-ray photoelectron spectroscopies evidence the reduction of H2PtCl6. CO infrared, and 195Pt and 13C NMR spectroscopies provide strong evidence of Pt1(0), existing as a pseudo-octahedral structure of (R1OR2)2Pt(0)Cl2H2 (R1 and R2 are H, C, or Si groups accordingly). The weakly coordinated (R1OR2)2Pt(0)Cl2H2 structure and electron deficient Pt1(0) have been validated by comparing experimental and DFT calculated 195Pt NMR spectra. The H+ in protic state and the Cl- together resemble HCl as the weak coordination. Neutralization by a base causes the formation of Pt nanoparticles. The Pt1@PDMS-PEG shows ultrahigh activity in olefin hydrosilylation with excellent terminal adducts selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...