Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(22): 5391-5404, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38716492

RESUMO

Quercetin, a flavonoid abundantly found in onions, fruits, and vegetables, is recognized for its pharmacological potential, especially for its anticoagulant properties that work by inhibiting thrombin and coagulation factor Xa. However, its clinical application is limited due to poor water solubility and bioavailability. To address these limitations, we engineered carbonized nanogels derived from quercetin (CNGsQur) using controlled pyrolysis and polymerization techniques. This led to substantial improvements in its anticoagulation efficacy, water solubility, and biocompatibility. We generated a range of CNGsQur by subjecting quercetin to varying pyrolytic temperatures and then assessed their anticoagulation capacities both in vitro and in vivo. Coagulation metrics, including thrombin clotting time (TCT), activated partial thromboplastin time (aPTT), and prothrombin time (PT), along with a rat tail bleeding assay, were utilized to gauge the efficacy. CNGsQur showed a pronounced extension of coagulation time compared to uncarbonized quercetin. Specifically, CNGsQur synthesized at 270 °C (CNGsQur270) exhibited the most significant enhancement in TCT, with a binding affinity to thrombin exceeding 400 times that of quercetin. Moreover, variants synthesized at 310 °C (CNGsQur310) and 290 °C (CNGsQur290) showed the most substantial delays in PT and aPTT, respectively. Our findings indicate that the degree of carbonization significantly influences the transformation of quercetin into various CNGsQur forms, each affecting distinct coagulation pathways. Additionally, both intravenous and oral administrations of CNGsQur were found to extend rat tail bleeding times by up to fivefold. Our studies also demonstrate that CNGsQur270 effectively delays and even prevents FeCl3-induced vascular occlusion in a dose-dependent manner in mice. Thus, controlled pyrolysis offers an innovative approach for generating quercetin-derived CNGs with enhanced anticoagulation properties and water solubility, revealing the potential for synthesizing self-functional carbonized nanomaterials from other flavonoids for diverse biomedical applications.


Assuntos
Anticoagulantes , Quercetina , Quercetina/química , Quercetina/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Animais , Ratos , Coagulação Sanguínea/efeitos dos fármacos , Nanogéis/química , Humanos , Camundongos , Masculino , Ratos Sprague-Dawley , Tamanho da Partícula
2.
J Biol Chem ; 298(6): 101957, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452675

RESUMO

Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Pontos Quânticos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbono , Vírus da Encefalite Japonesa (Espécie)/química , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral/metabolismo
3.
Water Res ; 212: 118121, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114531

RESUMO

Carbon-based materials, especially graphene oxide (GO) and carbon dots possessing antibacterial properties, are widely used for various applications. Recently, we reported the antibacterial and antioxidant properties of carbonized nanogels (CNGs) for the treatment of bacterial keratitis, and as a virostatic agent against infectious bronchitis virus. In this work, we demonstrate the use of CNGs/GO nanocomposite (GO@CNGs) membrane for the efficient removal of Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria from contaminated water. The GO@CNGs composite membrane with an optimized ratio of GO to CNGs could achieve more than 99% removal efficiency toward E. coli and S. aureus. Various strains of bacteria interact differently with the membrane, and hence the membrane shows different removal rate, which can be optimized by controlling the interaction time through regulating the water flux. The GO@CNGs membrane with an active area of 2.83 cm2 achieved > 99% bacterial removal efficiency at a water flux of 400 mL min-1 m-2. The dynamic disruption of bacteria by GO@CNGs plays a crucial role in eliminating the bacteria. Rather than filtering out the bacteria, GO@CNGs membrane allows them to pass through it, interact with the bacteria and rupture the bacterial cell membranes. Our GO@CNGs membrane shows great potential as a filter to remove bacteria from contaminated water samples, operating under tap water pressure without any extra power consumption.


Assuntos
Grafite , Staphylococcus aureus , Antibacterianos , Bactérias , Carbono , Escherichia coli , Água
4.
J Colloid Interface Sci ; 608(Pt 2): 1813-1826, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742090

RESUMO

Developing antimicrobial agents that can eradicate drug-resistant (DR) bacteria and provide sustained protection from DR bacteria is a major challenge. Herein, we report a mild pyrolysis approach to prepare carbon nanogels (CNGs) through polymerization and the partial carbonization of l-lysine hydrochloride at 270 °C as a potential broad-spectrum antimicrobial agent that can inhibit biopolymer-producing bacteria and clinical drug-resistant isolates and tackle drug resistance issues. We thoroughly studied the structures of the CNGs, their antibacterial mechanism, and biocompatibility. CNGs possess superior bacteriostatic effects against drug-resistant bacteria compared to some commonly explored antibacterial nanomaterials (silver, copper oxide, and zinc oxide nanoparticles, and graphene oxide) through multiple antimicrobial mechanisms, including reactive oxygen species generation, membrane potential dissipation, and membrane function disruption, due to the positive charge and flexible colloidal structures resulting strong interaction with bacterial membrane. The minimum inhibitory concentration (MIC) values of the CNGs (0.6 µg mL-1 against E. coli and S. aureus) remained almost the same against the bacteria after 20 passages; however, the MIC values increased significantly after treatment with silver nanoparticles, antibiotics, the bacteriostatic chlorhexidine, and especially gentamicin (approximately 140-fold). Additionally, the CNGs showed a negligible MIC value difference against the obtained resistant bacteria after acclimation to the abovementioned antimicrobial agents. The findings of this study unveil the development of antimicrobial CNGs as a sustainable solution to combat multidrug-resistant bacteria.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Bactérias , Carbono , Escherichia coli , Testes de Sensibilidade Microbiana , Nanogéis , Prata/farmacologia , Staphylococcus aureus
5.
J Nanobiotechnology ; 19(1): 448, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952588

RESUMO

BACKGROUND: Shrimp aquaculture has suffered huge economic losses over the past decade due to the outbreak of acute hepatopancreatic necrosis disease (AHPND), which is mainly caused by the bacteria Vibrio parahaemolyticus (V. parahaemolyticus) with the virulence pVA1 plasmid, which encodes a secretory photorhabdus insect-related (Pir) toxin composed of PirA and PirB proteins. The Pir toxin mainly attacks the hepatopancreas, a major metabolic organ in shrimp, thereby causing necrosis and loss of function. The pandemic of antibiotic-resistant strains makes the impact worse. METHODS: Mild pyrolysis of a mixture of polysaccharide dextran 70 and the crosslinker 1,8-diaminooctane at 180 â„ƒ for 3 h to form carbonized nanogels (DAO/DEX-CNGs) through controlled cross-linking and carbonization. The multifunctional therapeutic CNGs inherit nanogel-like structures and functional groups from their precursor molecules. RESULTS: DAO/DEX-CNGs manifest broad-spectrum antibacterial activity against Vibrio parahaemolyticus responsible for AHPND and even multiple drug-resistant strains. The polymer-like structures and functional groups on graphitic-carbon within the CNGs exhibit multiple treatment effects, including disruption of bacterial membranes, elevating bacterial oxidative stress, and neutralization of PirAB toxins. The inhibition of Vibrio in the midgut of infected shrimp, protection of hepatopancreas tissue from Pir toxin, and suppressing overstimulation of the immune system in severe V. parahaemolyticus infection, revealing that CNGs can effectively guard shrimp from Vibrio invasion. Moreover, shrimps fed with DAO/DEX-CNGs were carefully examined, such as the expression of the immune-related genes, hepatopancreas biopsy, and intestinal microbiota. Few adverse effects on shrimps were observed. CONCLUSION: Our work proposes brand-new applications of multifunctional carbon-based nanomaterials as efficient anti-Vibrio agents in the aquatic industry that hold great potential as feed additives to reduce antibiotic overuse in aquaculture.


Assuntos
Anti-Infecciosos/uso terapêutico , Nanogéis/uso terapêutico , Vibrioses/tratamento farmacológico , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Artemia/microbiologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Carbono/química , Dextranos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hepatopâncreas/patologia , Nanogéis/química , Nanogéis/toxicidade , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/patogenicidade
6.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063782

RESUMO

In this study, we demonstrate the synthesis of carbonized nanogels (CNGs) from an amino acid (lysine hydrochloride) using a simple pyrolysis method, resulting in effective viral inhibition properties against infectious bronchitis virus (IBV). The viral inhibition of CNGs was studied using both in vitro (bovine ephemeral fever virus (BEFV) and pseudorabies virus (PRV)) and in ovo (IBV) models, which indicated that the CNGs were able to prevent virus attachment on the cell membrane and penetration into the cell. A very low concentration of 30 µg mL-1 was found to be effective (>98% inhibition) in IBV-infected chicken embryos. The hatching rate and pathology of IBV-infected chicken embryos were greatly improved in the presence of CNGs. CNGs with distinctive virus-neutralizing activities show great potential as a virostatic agent to prevent the spread of avian viruses and to alleviate the pathology of infected avian species.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Lisina/farmacologia , Nanogéis/administração & dosagem , Substâncias Protetoras/farmacologia , Animais , Linhagem Celular , Galinhas/virologia , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Cricetinae , Vírus da Febre Efêmera Bovina/efeitos dos fármacos , Feminino , Herpesvirus Suídeo 1/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/virologia , Ratos , Ratos Sprague-Dawley , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
Biomater Sci ; 9(13): 4679-4690, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018502

RESUMO

We have demonstrated that alginate with negligible anticoagulant activity can be converted into carbonized nanogels with potent anticoagulant activity through a solid-state heating process. The conversion of alginate into graphene-like nanosheet (GNS)-embedded polyphenolic-alginate nanogels (GNS/Alg-NGs) has been carried out through condensation and carbonization processes. The GNS/Alg-NGs exhibit much stronger anticoagulant activity (>520-fold) compared to untreated alginate, mainly because their polyphenolic structures have a high binding affinity [dissociation constant (Kd) = 2.1 × 10-10 M] toward thrombin. In addition, the thrombin clotting time delay caused by the GNS/Alg-NGs is 10-fold longer than that of natural polyphenolic compounds, such as quercetin, catechin, naringenin, caffeic acid, and ferulic acid. The thrombin- or kaolin-activated thromboelastography of whole-blood coagulation reveals that the GNS/Alg-NGs display a much stronger anticoagulant ability than that of untreated alginate and naturally sulfated polysaccharides (fucoidan). The GNS/Alg-NGs exhibit superior biocompatibility and anticoagulant activity, as observed with an in vivo rat model, revealing their potential as a blood thinner for the treatment of thrombotic disorders.


Assuntos
Anticoagulantes , Polissacarídeos , Animais , Anticoagulantes/farmacologia , Coagulação Sanguínea , Nanogéis , Polissacarídeos/farmacologia , Ratos , Trombina/farmacologia
8.
Appl Microbiol Biotechnol ; 105(4): 1435-1446, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33484319

RESUMO

In this study, we applied metabolic engineering and bioprocessing strategies to enhance heterologous production of an important biodegradable copolymer, i.e., poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a modulated 3-hydroxyvalerate (3-HV) monomeric fraction from structurally unrelated carbon of glycerol in engineered Escherichia coli under different oxygenic conditions. We used our previously derived propanologenic (i.e., 1-propanol-producing) E. coli strain with an activated genomic Sleeping beauty mutase (Sbm) operon as a host for heterologous expression of the phaCAB operon. The 3-HV monomeric fraction was modulated by regulating dissimilated carbon flux channeling from the tricarboxylic acid (TCA) cycle into the Sbm pathway for biosynthesis of propionyl-CoA, which is a key precursor to (R)-3-hydroxyvaleryl-CoA (3-HV-CoA) monomer. The carbon flux channeling was regulated either by manipulating a selection of genes involved in the TCA cycle or varying oxygenic condition of the bacterial culture. With these consolidated strategies being implemented, we successfully achieved high-level PHBV biosynthesis with a wide range of 3-HV monomeric fraction from ~ 4 to 50 mol%, potentially enabling the fine-tuning of PHBV mechanical properties at the biosynthesis stage. We envision that similar strategies can be applied to enhance bio-based production of chemicals derived from succinyl-CoA. KEY POINTS: • TCA cycle engineering was applied to enhance 3-HV monomeric fraction in E. coli. • Effects of oxygenic conditions on 3-HV incorporation into PHBV in E. coli were investigated. • Bacterial cultivation for high-level PHBV production in engineered E. coli was performed.


Assuntos
Escherichia coli , Hidroxibutiratos , Escherichia coli/genética , Ácidos Pentanoicos , Poliésteres
9.
Biotechnol Bioeng ; 118(1): 30-42, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860420

RESUMO

Herein, we report the development of a microbial bioprocess for high-level production of 5-aminolevulinic acid (5-ALA), a valuable non-proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5-ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5-ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl-CoA for enhanced 5-ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high-level 5-ALA biosynthesis from glycerol (~30 g L-1 ) under both microaerobic and aerobic conditions, achieving up to 5.95 g L-1 (36.9% of the theoretical maximum yield) and 6.93 g L-1 (50.9% of the theoretical maximum yield) 5-ALA, respectively. This study represents one of the most effective bio-based production of 5-ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio-based production.


Assuntos
Ácido Aminolevulínico/metabolismo , Escherichia coli , Engenharia Metabólica , Microrganismos Geneticamente Modificados/metabolismo , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética
10.
Appl Microbiol Biotechnol ; 104(12): 5259-5272, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32291486

RESUMO

As petro-based production generates numerous environmental impacts and their associated technological concerns, bio-based production has been well recognized these days as a modern alternative to manufacture chemical products in a more renewable, environmentally friendly, and sustainable manner. Herein, we report the development of a microbial bioprocess for high-level and potentially economical production of 3-hydroxyvalerate (3-HV), a valuable special chemical with multiple applications in chemical, biopolymer, and pharmaceutical industries, from glycerol, which can be cheaply and renewably refined as a byproduct from biodiesel production. We used our recently derived 3-HV-producing Escherichia coli strains for bioreactor characterization under various culture conditions. In the parental strain, 3-HV biosynthesis was limited by the intracellular availability of propionyl-CoA, whose formation was favored by anaerobic conditions, which often compromised cell growth. With appropriate strain engineering, we demonstrated that 3-HV can be effectively produced under both microaerobic (close to anaerobic) and aerobic conditions, which determine the direction of dissimilated carbon flux toward the succinate node in the tricarboxylic acid (TCA) cycle. We first used the ∆sdhA single mutant strain, in which the dissimilated carbon flux was primarily directed to the Sleeping beauty mutase (Sbm) pathway (via the reductive TCA branch, with enhanced cell growth under microaerobic conditions, achieving 3.08 g L-1 3-HV in a fed-batch culture. In addition, we used the ∆sdhA-∆iclR double mutant strain, in which the dissimilated carbon flux was directed from the TCA cycle to the Sbm pathway via the deregulated glyoxylate shunt, for cultivation under rather aerobic conditions. In addition to demonstrating effective cell growth, this strain has shown impressive 3-HV biosynthesis (up to 10.6 g L-1), equivalent to an overall yield of 18.8% based on consumed glycerol, in aerobic fed-batch culture. This study not only represents one of the most effective bio-based production of 3-HV from structurally unrelated carbons to date, but also highlights the importance of integrated strain engineering and bioprocessing strategies to enhance bio-based production.Key points• TCA cycle engineering was applied to enhance 3-HV biosynthesis in E. coli. • Effects of oxygenic conditions on 3-HV in E. coli biosynthesis were investigated. • Bioreactor characterization of 3-HV biosynthesis in E. coli was performed.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Ácidos Pentanoicos/metabolismo , Acil Coenzima A/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Ciclo do Ácido Cítrico , Proteínas de Escherichia coli/genética , Fermentação , Microbiologia Industrial
11.
Biotechnol Bioeng ; 117(5): 1304-1315, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31956980

RESUMO

A propanologenic (i.e., 1-propanol-producing) bacterium Escherichia coli strain was previously derived by activating the genomic sleeping beauty mutase (Sbm) operon. The activated Sbm pathway branches out of the tricarboxylic acid (TCA) cycle at the succinyl-CoA node to form propionyl-CoA and its derived metabolites of 1-propanol and propionate. In this study, we targeted several TCA cycle genes encoding enzymes near the succinyl-CoA node for genetic manipulation to identify the individual contribution of the carbon flux into the Sbm pathway from the three TCA metabolic routes, that is, oxidative TCA cycle, reductive TCA branch, and glyoxylate shunt. For the control strain CPC-Sbm, in which propionate biosynthesis occurred under relatively anaerobic conditions, the carbon flux into the Sbm pathway was primarily derived from the reductive TCA branch, and both succinate availability and the SucCD-mediated interconversion of succinate/succinyl-CoA were critical for such carbon flux redirection. Although the oxidative TCA cycle normally had a minimal contribution to the carbon flux redirection, the glyoxylate shunt could be an alternative and effective carbon flux contributor under aerobic conditions. With mechanistic understanding of such carbon flux redirection, metabolic strategies based on blocking the oxidative TCA cycle (via ∆sdhA mutation) and deregulating the glyoxylate shunt (via ∆iclR mutation) were developed to enhance the carbon flux redirection and therefore propionate biosynthesis, achieving a high propionate titer of 30.9 g/L with an overall propionate yield of 49.7% upon fed-batch cultivation of the double mutant strain CPC-Sbm∆sdhA∆iclR under aerobic conditions. The results also suggest that the Sbm pathway could be metabolically active under both aerobic and anaerobic conditions.


Assuntos
Escherichia coli , Engenharia Metabólica/métodos , Propionatos/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Reatores Biológicos/microbiologia , Ciclo do Ácido Cítrico/genética , Escherichia coli/genética , Escherichia coli/metabolismo
12.
J Mater Chem B ; 8(16): 3506-3512, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31859331

RESUMO

In this study, we have developed a rapid and cost-effective method employing platinum ion (Pt4+)-capped fluorescent carbon quantum dots (CQDs) coupled with loop-mediated isothermal amplification (LAMP) to detect dual MRSA genes. We synthesized nitrogen- and chlorine-co-doped fluorescent CQDs (CQDSPDs) from spermidine trihydrochloride via a simple one-step pyrolysis. The CQDSPDs capped with Pt4+ ions through the cooperative coordination of the amine and chlorine groups on the surface of CQDs facilitated the double-stranded DNA (dsDNA)-induced fluorescence quenching of CQDs, and enabled the construction of the CQDSPDs/Pt4+ probe for the detection of as few as 10 copies of the MRSA gene (mecA and femA). The sensitivity and specificity of the CQDSPDs/Pt4+ probe for MRSA detection in clinical specimens (n = 24) were 94% and 86%, respectively. Our results reveal that the CQDSPDs/Pt4+ probe has great potential for the diagnosis of antibiotic-resistant superbugs with high sensitivity, specificity, and agreement.


Assuntos
Carbono/química , DNA/química , Corantes Fluorescentes/química , Platina/química , Pontos Quânticos/química , Infecções Estafilocócicas/diagnóstico , Humanos , Íons/química , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Small ; 15(41): e1902641, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31468672

RESUMO

It is demonstrated that carbon quantum dots derived from curcumin (Cur-CQDs) through one-step dry heating are effective antiviral agents against enterovirus 71 (EV71). The surface properties of Cur-CQDs, as well as their antiviral activity, are highly dependent on the heating temperature during synthesis. The one-step heating of curcumin at 180 °C preserves many of the moieties of polymeric curcumin on the surfaces of the as-synthesized Cur-CQDs, resulting in superior antiviral characteristics. It is proposed that curcumin undergoes a series of structural changes through dehydration, polymerization, and carbonization to form core-shell CQDs whose surfaces remain a pyrolytic curcumin-like polymer, boosting the antiviral activity. The results reveal that curcumin possesses insignificant inhibitory activity against EV71 infection in RD cells [half-maximal effective concentration (EC50 ) >200 µg mL-1 ] but exhibits high cytotoxicity toward RD cells (half-maximal cytotoxic concentration (CC50 ) <13 µg mL-1 ). The EC50 (0.2 µg mL-1 ) and CC50 (452.2 µg mL-1 ) of Cur-CQDs are >1000-fold lower and >34-fold higher, respectively, than those of curcumin, demonstrating their far superior antiviral capabilities and high biocompatibility. In vivo, intraperitoneal administration of Cur-CQDs significantly decreases mortality and provides protection against virus-induced hind-limb paralysis in new-born mice challenged with a lethal dose of EV71.


Assuntos
Antivirais/farmacologia , Carbono/química , Curcumina/farmacologia , Pontos Quânticos/química , Animais , Encéfalo/virologia , Morte Celular/efeitos dos fármacos , Curcumina/química , Enterovirus/efeitos dos fármacos , Fator de Iniciação Eucariótico 4G/metabolismo , Feminino , Masculino , Camundongos Endogâmicos ICR , Músculos/virologia , Fosforilação/efeitos dos fármacos , Pontos Quânticos/ultraestrutura , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Vírion/efeitos dos fármacos , Vírion/metabolismo , Difração de Raios X , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Front Chem ; 7: 280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157200

RESUMO

Graphene oxide (GO), a two-dimensional material with a high aspect ratio and polar functional groups, can physically adsorb single-strand DNA through different types of interactions, such as hydrogen bonding and π-π stacking, making it an attractive nanocarrier for nucleic acids. In this work, we demonstrate a strategy to target exosites I and II of thrombin simultaneously by using programmed hybrid-aptamers for enhanced anticoagulation efficiency and stability. The targeting ligand is denoted as Supra-TBA15/29 (supramolecular TBA15/29), containing TBA15 (a 15-base nucleotide, targeting exosite I of thrombin) and TBA29 (a 29-base nucleotide, targeting exosite II of thrombin), and it is designed to allow consecutive hybridization of TBA15 and TBA29 to form a network of TBAs (i.e., supra-TBA15/29). The programmed hybrid-aptamers (Supra-TBA15/29) were self-assembled on GO to further boost anticoagulation activity by inhibiting thrombin activity, and thus suppress the thrombin-induced fibrin formation from fibrinogen. The Supra-TBA15/29-GO composite was formed mainly through multivalent interaction between poly(adenine) from Supra-TBA15/29 and GO. We controlled the assembly of Supra-TBA15/29 on GO by regulating the preparation temperature and the concentration ratio of Supra-TBA15/29 to GO to optimize the distance between TBA15 and TBA29 units, aptamer density, and aptamer orientation on the GO surfaces. The dose-dependent thrombin clotting time (TCT) delay caused by Supra-TBA15/29-GO was >10 times longer than that of common anticoagulant drugs including heparin, argatroban, hirudin, and warfarin. Supra-TBA15/29-GO exhibits high biocompatibility, which has been proved by in vitro cytotoxicity and hemolysis assays. In addition, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays indicate the anticoagulation ability of Supra-TBA15/29-GO is superior to the most widely used anticoagulant (heparin). Our highly biocompatible Supra-TBA15/29-GO with strong multivalent interaction with thrombin [dissociation constant (K d) = 1.9 × 10-11 M] shows great potential as an effective direct thrombin inhibitor for the treatment of hemostatic disorders.

15.
J Colloid Interface Sci ; 552: 583-596, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31163388

RESUMO

We have developed a one-pot synthesis of bio-carbon nanowires from the natural product sodium alginate at low temperature, without using any catalyst, for anticoagulation applications. Sodium alginate is carbonized and sulfated/sulfonated in situ by solid state heating of a mixture of sodium alginate and ammonium sulfite. By regulating the heating temperature and the ratio of ammonium sulfite to sodium alginate, we modulated the degree of sulfation/sulfonation and carbonization, as well as the morphology of the carbon nanomaterials. The core-shell sulfated/sulfonated bio-carbon nanowires (CNWsAlg@SOx) made by the reaction of a mixture of ammonium sulfite and sodium alginate with a mass ratio of 5 (ammonium sulfite to sodium alginate) at 165 °C for 3 h, exhibit strong inhibition of thrombin activity due to their ultrahigh binding affinity towards it (dissociation constant (Kd) = 8.7 × 10-11 M). The possible formation mechanism of the carbon nanowires has been proposed. The thrombin-clotting time delay caused by CNWsAlg@SOx is ∼ 170 times longer than that caused by sodium alginate. Hemolysis and cytotoxicity assays demonstrated the high biocompatibility of CNWsAlg@SOx. Furthermore, the thromboelastography of whole-blood coagulation and rat-tail bleeding assays further reveal that CNWsAlg@SOx have a much stronger anticoagulation activity than sodium alginate and naturally sulfated polysaccharides (e.g., fucoidan). Our results suggest that the low-temperature prepared, cost-effective, and highly biocompatible CNWsAlg@SOx show great potential as an efficient anticoagulant for the prevention and treatment of diseases associated with thrombosis.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Carbono/farmacologia , Nanofios/química , Trombina/antagonistas & inibidores , Alginatos/química , Alginatos/farmacologia , Animais , Anticoagulantes/química , Carbono/química , Estrutura Molecular , Tamanho da Partícula , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Ratos , Sulfitos/química , Sulfitos/farmacologia , Propriedades de Superfície , Trombina/metabolismo
16.
J Food Drug Anal ; 26(4): 1215-1228, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30249320

RESUMO

Nanoparticle-assisted laser desorption/ionization mass spectrometry (LDI-MS) is a powerful tool for the analysis of a wide range of molecules. Many of the drawbacks in the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) can be avoided with the application of nanomaterials as matrices as well as substrates for the LDI-MS to achieve a low background noise in low m/z region and high reproducibility. Surface-assisted LDI (SALDI)-MS, especially the nanoparticle-based LDI-MS, has emerged as a promising technique for the analysis of trace amounts of substances in various biological samples due to their high surface area for analyte enrichment, efficient desorption/ionization, and homogeneous crystallization of sample. Therefore, it is highly useful in clinical, forensic, medical, food and drug analyses, disease diagnosis, and various other fields. In this review, we briefly discuss the application of various nanomaterials, which include metal-based, carbon-based, silicon-based nanomaterials and nanocomposites, as matrices and substrates for LDI-MS based drug and metabolite analyses and possible detection strategies. Also, we discuss the idea of using "mass tag" for signal amplification for drug and metabolite detection using nanoparticle assisted LDI-MS.


Assuntos
Nanopartículas/química , Preparações Farmacêuticas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
17.
Biomater Sci ; 6(7): 1882-1891, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29808843

RESUMO

Graphene oxide (GO) has unique structural properties, can effectively adsorb single-strand DNA through π-π stacking, hydrogen bonding and hydrophobic interactions, and is useful in many biotechnology applications. In this study, we developed a thrombin-binding-aptamers (15- and 29-mer) conjugated graphene oxide (TBA15/TBA29-GO) composite for the efficient inhibition of thrombin activity towards the formation of fibrin from fibrinogen. The TBA15/TBA29-GO composite was simply obtained by the self-assembly of TBA15/TBA29 hybrids on GO. The high density and appropriate orientation of TBA15/TBA29 on the GO surface enabled TBA15/TBA29-GO to acquire an ultrastrong binding affinity for thrombin (dissociation constant = 2.9 × 10-12 M). Compared to bivalent TBA15h20A20/TBA29h20A20 hybrids, the TBA15/TBA29-GO composite exhibited a superior anticoagulant potency (ca. 10-fold) against thrombin-mediated coagulation as a result of steric blocking effects and a higher binding affinity for thrombin. In addition, the prolonged thrombin clotting time, prothrombin time (PT), and activated partial thromboplastin time (aPTT) of TBA15/TBA29-GO were at least 2 times longer than those of commercially available drugs (heparin, argatroban, hirudin, and warfarin). The in vitro cytotoxicity and hemolysis analyses revealed the high biocompatibility of TBA15/TBA29-GO. The rat-tail bleeding assay of the hemostasis time and ex vivo PT and aPTT further revealed that TBA15/TBA29-GO is superior (>2-fold) to heparin, which is commonly used in the treatment and prevention of thrombotic diseases. Our multivalent, oligonucleotide-modified GO nanocomposites are easy to prepare, cost-effective, and highly biocompatible and they show great potential as effective anticoagulants for the treatment of thrombotic disorders.


Assuntos
Anticoagulantes/farmacologia , Aptâmeros de Nucleotídeos/síntese química , Coagulação Sanguínea/efeitos dos fármacos , DNA de Cadeia Simples/química , Grafite/química , Trombina/antagonistas & inibidores , Adsorção , Animais , Anticoagulantes/síntese química , Aptâmeros de Nucleotídeos/metabolismo , Arginina/análogos & derivados , Ligação Competitiva , DNA de Cadeia Simples/metabolismo , Heparina/farmacologia , Hirudinas/farmacologia , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Masculino , Óxidos , Ácidos Pipecólicos/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Sulfonamidas , Trombina/farmacologia
18.
Anal Chim Acta ; 1009: 89-97, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29422136

RESUMO

In this paper, we report a simple one-step synthesis method for silver-gold bimetallic nanoparticles deposition on silver chloride nanosheets to form Ag-Au/AgCl nanohybrid with oxidase-like and peroxidase-like catalytic activity. We used these nanohybrid in the detection of spermine. First, 13 nm-sized Au NPs were synthesized by citrate reduction of HAuCl4 solution, and then, Ag+ ions were added to the solution without any purification. The added Ag+ reacted with the Cl- ions in the dispersion, thus immediately forming AgCl nanosheets through a precipitation reaction, and the aurophilic interactions with the Au NPs resulted in the formation and in situ self-deposition of Ag-Au NPs on the AgCl nanosheets at room temperature. We investigated the enzyme-mimicking activity of the Ag-Au/AgCl nanohybrid in detail via the O2- or H2O2-Amplex Red (AR) redox system. The Ag-Au/AgCl nanohybrid exhibited at least 150-fold higher catalytic activity than that of Ag-Au NPs or AgCl nanosheets, due to synergistic effect. Spermine inhibited the enzyme-mimic activity of the Ag-Au/AgCl nanohybrid, thereby allowing for the construction of a probe for detecting nanomolar concentrations of spermine in urine samples. This cost-effective sensing system was used to easily and rapidly detect the concentrations of spermine in complex urine samples.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Compostos de Prata/química , Prata/química , Espermina/urina , Catálise , Humanos , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
19.
ACS Appl Mater Interfaces ; 9(51): 44307-44315, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29202217

RESUMO

Gene detection has an important role in diagnosing several serious diseases and genetic defects in modern clinical medicine. Herein, we report a fast and convenient gene detection method based on the modulation of the interaction between a heat-resistant double-stranded DNA (dsDNA)-binding protein (Sso7d) and gold nanoparticles (Au NPs). We prepared a recombinant Cys-Sso7d, which is Sso7d with an extra cysteine (Cys) residue in the N-terminus, through protein engineering to control the interaction between Sso7d and Au NPs. Cys-Sso7d exhibited a stronger affinity for Au NPs and more easily induced the aggregation of Au NPs than Sso7d. In addition, Cys-Sso7d retained its ability to bind with dsDNA. The aggregation of Au NPs induced by Cys-Sso7d was diminished in the presence of dsDNA, which could be utilized as a transduction mechanism for the detection of the polymerase chain reaction (PCR) products of human papillomavirus (HPV) gene fragments (HPV types 16 and 18). The Cys-Sso7d/Au NP probe could detect as few as 1 copy of the HPV gene. The sensitivity and specificity of the Cys-Sso7d/Au NP probe for Pap smear clinical specimens (n = 52) for HPV 16 and HPV 18 detection were 85.7%/100.0% and 85.7%/91.7%, respectively. Our results demonstrate that the Cys-Sso7d/Au NP probe can be used to diagnose high-risk HPV types in Pap smear samples with high sensitivity, specificity, and accuracy.


Assuntos
Nanopartículas Metálicas , DNA , Proteínas de Ligação a DNA , Feminino , Ouro , Humanos , Infecções por Papillomavirus
20.
Nanoscale ; 9(46): 18359-18367, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29143845

RESUMO

Carbon quantum dots (CQDs) have attracted enormous interest in recent years owing to their low cytotoxicity, excellent biocompatibility and strong fluorescence. They have been successfully employed in sensor, bio-imaging, and drug carrier applications. A complete understanding of their core-surface structure is essential for tuning their physical and chemical properties for various applications. Conventional characterizations of CQDs are conducted with electron microscopy or spectroscopy, such as transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. However, these techniques cannot fully resolve the core-surface structure of CQDs. In this study, we attempt to analyze the structures of CQDs by laser desorption/ionization mass spectrometry (LDI-MS) using three model CQDs synthesized from citric acid (CA-CQDs), diammonium citrate (AC-CQDs) and spermidine trihydrochloride (Spd-CQDs). Both CA-CQDs and AC-CQDs produced anionic carbon cluster ions ([Cn]-, n = 4-9) during the laser desorption/ionization process. Additionally, AC-CQDs produced fragments containing C, N, and O that appeared at m/z values of 41.999, 91.015, and 107.008, which were identified by 15N isotopes as [CNO]-, [CH3N2O3]-, and [CH3N2O4]-, respectively. By contrast, subjecting Spd-CQDs to the same analysis did not yield carbon cluster ions ([Cn]-); instead, strong chlorine-associated ions with a unique isotopic pattern were observed, strongly implying that Spd-CQDs contain chlorine. The lack of carbon cluster ion formation in nitrogen- and chlorine-doped Spd-CQDs indicates that nitrogen and chlorine are abundantly and homogenously doped in the CQDs. We also found a shot-dependent fragmentation behavior for AC-CQDs that produces nitrogen- and oxygen-containing ions and carbon cluster ions ([Cn]-) during initial fragmentation of the surface, with a gradual destruction of the nanocrystalline carbon core after additional shots. These results suggest that LDI-MS can be used as a tool for analyzing the core-surface structure of CQDs, particularly when it contains a heteroatom doped carbon core with various surface functional groups containing nitrogen, oxygen and halogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...