Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 66(4): 045033, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33333499

RESUMO

Accurate and automatic carotid artery segmentation for magnetic resonance (MR) images is eagerly expected, which can greatly assist a comprehensive study of atherosclerosis and accelerate the translation. Although many efforts have been made, identification of the inner lumen and outer wall in diseased vessels is still a challenging task due to complex vascular deformation, blurred wall boundary, and confusing componential expression. In this paper, we introduce a novel fully automatic 3D framework for simultaneously segmenting the carotid artery from high-resolution multi-contrast MR sequences based on deep learning. First, an optimal channel fitting structure is designed for identity mapping, and a novel 3D residual U-net is used as a basic network. Second, high-resolution MR images are trained using both patch-level and global-level strategies, and the two pre-segmentation results are optimized based on structural characteristics. Third, the optimized pre-segmentation results are cascaded with the patch-cropped MR volume data and trained to segment the carotid lumen and wall. Extensive experiments demonstrate the proposed method outperforms the state-of-the-art 3D Unet-based segmentation models.


Assuntos
Artérias Carótidas/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Automação , Humanos
2.
Front Cardiovasc Med ; 8: 785523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004897

RESUMO

Cardiovascular disease (CVD) is a common disease with high mortality rate, and carotid atherosclerosis (CAS) is one of the leading causes of cardiovascular disease. Multisequence carotid MRI can not only identify carotid atherosclerotic plaque constituents with high sensitivity and specificity, but also obtain different morphological features, which can effectively help doctors improve the accuracy of diagnosis. However, it is difficult to evaluate the accurate evolution of local changes in carotid atherosclerosis in multi-sequence MRI due to the inconsistent parameters of different sequence images and the geometric space mismatch caused by the motion deviation of tissues and organs. To solve these problems, we propose a cross-scale multi-modal image registration method based on the Siamese U-Net. The network uses sub-networks with image inputs of different sizes to extract various features, and a special padding module is designed to make the network available for training on cross-scale features. In addition, to improve the registration performance, a multi-scale loss function under Gaussian smoothing is applied for optimization. For the experiments, we have collected a multi-sequence MRI image dataset from 11 patients with carotid atherosclerosis for a retrospective study. We evaluate our overall architectures by cross-validation on our carotid dataset. The experimental results show that our method can generate precise and reliable results with cross-scale multi-sequence inputs and the registration accuracy can be greatly improved by using the Gaussian smoothing loss function. The DSC of our Siamese structure can reach 84.1% on the carotid data set with cross-size input. With the use of GDSC loss, the average DSC can be improved by 5.23%, while the average distance between fixed landmarks and moving landmarks can be decreased by 6.46%.Our code is made publicly available at: https://github.com/MingHan98/Cross-scale-Siamese-Unet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...