Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5170, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886341

RESUMO

The spatiotemporal regulation of inflammasome activation remains unclear. To examine the mechanism underlying the assembly and regulation of the inflammasome response, here we perform an immunoprecipitation-mass spectrometry analysis of apoptosis-associated speck-like protein containing a CARD (ASC) and identify NCF4/1/2 as ASC-binding proteins. Reduced NCF4 expression is associated with colorectal cancer development and decreased five-year survival rate in patients with colorectal cancer. NCF4 cooperates with NCF1 and NCF2 to promote NLRP3 and AIM2 inflammasome activation. Mechanistically, NCF4 phosphorylation and puncta distribution switches from the NADPH complex to the perinuclear region, mediating ASC oligomerization, speck formation and inflammasome activation. NCF4 functions as a sensor of ROS levels, to establish a balance between ROS production and inflammasome activation. NCF4 deficiency causes severe colorectal cancer in mice, increases transit-amplifying and precancerous cells, reduces the frequency and activation of CD8+ T and NK cells, and impairs the inflammasome-IL-18-IFN-γ axis during the early phase of colorectal tumorigenesis. Our study implicates NCF4 in determining the spatial positioning of inflammasome assembly and contributing to inflammasome-mediated anti-tumor responses.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Neoplasias Colorretais , Vigilância Imunológica , Inflamassomos , Espécies Reativas de Oxigênio , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Inflamassomos/metabolismo , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Espécies Reativas de Oxigênio/metabolismo , Progressão da Doença , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Camundongos Knockout , Interleucina-18/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Fosforilação , Linhagem Celular Tumoral
2.
Front Cell Dev Biol ; 9: 743335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869331

RESUMO

Bacterial infection tendentiously triggers inflammasome activation, whereas the roles of inflammasome activation in host defense against diverse infections remain unclear. Here, we identified that an ASC-dependent inflammasome activation played opposite roles in host defense against Francisella novicida wild-type (WT) U112 and mutant strain XWK4. Comparing with U112, XWK4 infection induced robust cytokine production, ASC-dependent inflammasome activation, and pyroptosis. Both AIM2 and NLRP3 were involved and played independent roles in XWK4-induced inflammasome activation. Type II interferon was partially required for XWK4-triggered inflammasome activation, which was different from type I interferon dependency in U112-induced inflammasome activation. Distinct from F. novicida U112 and Acinetobacter baumannii infection, Asc-/- mice were more resistant than WT mice response to XWK4 infection by limiting bacterial burden in vivo. The excessive inflammasome activation triggered by XWK4 infection caused dramatical cell death and pathological damage. Our study offers novel insights into mechanisms of inflammasome activation in host defense and provides potential therapeutic approach against bacterial infections and inflammatory diseases.

3.
Bio Protoc ; 11(17): e4151, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34604456

RESUMO

An inflammasome is an intracellular multiprotein complex that plays important roles in host defense and inflammatory responses. Inflammasomes are typically composed of the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC), cytoplasmic sensor protein, and the effector protein pro-caspase-1. ASC assembly into a protein complex termed ASC speck is a readout for inflammasome activation. Here, we provide a step-by-step protocol for the detection of ASC speck by confocal microscopy in Bone marrow derived macrophages (BMBDs) triggered by chemical stimuli and bacterial pathogens. We also describe the detailed procedure for the generation of BMDMs, stimulating conditions for inflammasome activation, immunofluorescence cell staining of ASC protein, and microscopic examination. Thus far, this method is a simple and reliable manner to visualize and quantify the intracellular localization of ASC speck. Graphic abstract: Figure 1. Confocal microscopy detection of ASC speck formation in untreated WT BMDMs and WT BMDMs stimulated with LPS and ATP, transfected with dsDNA, and infected with F. novicida or Salmonella as indicated. Arrow indicates the ASC speck. Scale bars: 10 µm.

4.
Cancer Sci ; 111(9): 3174-3183, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32539182

RESUMO

Programmed cell death-ligand 1 (PD-L1) expressed on cancer cells can cause immune escape of non-small-cell lung cancer (NSCLC). Elucidation of the regulatory mechanisms of the PD-L1 expression is a prerequisite for establishing new tumor immunotherapy strategies. Ubiquitin C-terminal hydrolase L1 (UCHL1) is a regulator of cellular signaling transduction that is aberrantly expressed in NSCLC. However, it is not known whether UCHL1 regulates the expression of PD-L1 in NSCLC cells. In the present study, we found that UCHL1 promotes the expression of PD-L1 in NSCLC cell lines. In addition, UCHL1 expressed in NSCLC cells inhibited activation of Jurkat cells through upregulation of PD-L1 expression in in vitro experiments. Moreover, UCHL1 upregulates PD-L1 expression through facilitating activation of the AKT-P65 signaling pathway. In conclusion, these results indicated that UCHL1 promoted PD-L1 expression in NSCLC cells. This finding implied that inhibition of UCHL1 might suppress immune escape of NSCLC through downregulation of PD-L1 expression in NSCLC cells.


Assuntos
Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ubiquitina Tiolesterase/metabolismo , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Imunomodulação , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Transcrição RelA/metabolismo
5.
Front Immunol ; 10: 1643, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379842

RESUMO

Hepatocellular carcinoma (HCC) is a prototype of inflammation-related cancer, harboring M1-like and M2-like tumor-associated macrophages. M1 macrophages are thought to be tumoricidal, but some studies report its pro-tumor role. The programmed cell death-ligand (PD-L) 1 expressed in HCC cells is a critical checkpoint molecule to mediate immune escape of HCC. The PD-L1 expression in HCC cells is inducible. In the present study, we ask whether M1 macrophages induce the expression of PD-L1 in HCC cells. First, an association between M1 macrophage infiltration and PD-L1 expression in HCC tissues was determined by bioinformatics and immunohistochemistry experiments. The enrichment score of M1 macrophages was correlated to PD-L1 expression in 90 HCC samples from GEO database. Besides, infiltration of CD68+HLA-DR+ M1-like macrophages correlated with PD-L1 expression level in HCC cells. Moreover, M1-conditioned media was prepared from M1 macrophages derived from THP-1 cell, RAW264.7 cell or murine bone marrow. These supernatants induced expression of PD-L1 in HCC cells. Furthermore, inflammatory cytokine IL-1ß in the supernatants was identified to account for the inducible PD-L1 expression by siRNA assay and receptor blockade assay. Additionally, transcription factor p65 and IRF1 in the HCC cells were revealed by CHIP assay to mediate the inducible PD-L1 expression. All the results demonstrate that M1 macrophages induced expression of PD-L1 in HCC cells, supporting the pro-tumor role of M1 macrophages.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Interleucina-1beta/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Humanos , Camundongos , Células RAW 264.7 , Células THP-1
6.
Mol Immunol ; 101: 203-209, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30007230

RESUMO

The effectiveness of immunotherapy targeting the immune checkpoint PD-L1/PD-1 pathway highlights importance of elucidating the regulatory mechanisms of PD-L1 expression in cancer cells. Previous studies demonstrate that oncogene MYC up-regulates PD-L1 expression in lymphomas. In the present study, we investigated the regulatory role of MYC in the PD-L1 expression induced by IFN-γ in HCC cells. Unexpectedly, knockdown of MYC expression using siRNA assay increased the inducible expression of PD-L1 both at mRNA and protein levels. Mechanistically, the inhibition of MYC elevated expression of STAT1, a critical component of IFN-γ signaling pathway, leading to the elevation of PD-L1 expression in HCC cells exposed to IFN-γ. These results suggest that MYC may down-regulate PD-L1 expression in the context of HCC. This study implicates that a combination therapy targeting MYC function and PD-L1/PD-1 pathway might be effective for treatment of HCC.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Interferon gama/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...