Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Biomed ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889391

RESUMO

This study aimed to explores the factors influencing thyroid nodules (TNs) in individuals with type 2 diabetes mellitus (T2DM) and evaluates the consistency between different American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) grades and Bethesda scores. Total of 642 T2DM patients were divided into TN group (245) and control group (397) based on the presence or absence of TNs. TN patients were further categorized into ACR TI-RADS classification (TR) 1 to 4 and TR5 subgroups. Diabetes-related clinical and biochemical parameters were collected, and differences were analyzed using univariate analysis. Logistic regression analysis was utilized to pinpoint independent influencing factors for TN occurrence and different TN classifications. Consequently, age, body mass index (BMI), fasting plasma glucose level (FBGL), low density lipoprotein cholesterol (LDL-C), diabetic progression, and family history of TNs emerged as independent risk factors for TN development in T2DM patients. Additionally, glycosylated hemoglobin (HbA1c), nodule diameter, and family history of TNs were identified as independent risk factors for TR5 TN development in T2DM patients. All TR1 to 2 nodules had a Bethesda score of 2 and all showed benign pathological findings. In 97.10% of cases (67/69), nodules classified as TR3 exhibited a Bethesda score of 2, with all pathological results indicating benign findings, aligning with the Bethesda score. In addition, the concordance between TR4 nodules and Bethesda score was only 78.57% (88/112). In conclusion, TNs and their malignancy in T2DM patients are significantly linked to blood glucose and lipid metabolism indexes. TR3 classification in T2DM patients poses a low malignancy risk, suggesting caution when conducting fine needle aspiration cytology (FNAC) testing.

2.
Small ; 20(19): e2308550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282057

RESUMO

Lithium-sulfur (Li-S) batteries, which store energy through reversible redox reactions with multiple electron transfers, are seen as one of the promising energy storage systems of the future due to their outstanding advantages. However, the shuttle effect, volume expansion, low conductivity of sulfur cathodes, and uncontrollable dendrite phenomenon of the lithium anodes have hindered the further application of Li-S batteries. In order to solve the problems and clarify the electrochemical reaction mechanism, various types of materials, such as metal compounds and carbon materials, are used in Li-S batteries. Polymers, as a class of inexpensive, lightweight, and electrochemically stable materials, enable the construction of low-cost, high-specific capacity Li-S batteries. Moreover, polymers can be multifunctionalized by obtaining rich structures through molecular design, allowing them to be applied not only in cathodes, but also in binders and solid-state electrolytes to optimize electrochemical performance from multiple perspectives. The most widely used areas related to polymer applications in Li-S batteries, including cathodes and electrolytes, are selected for a comprehensive overview, and the relevant mechanisms of polymer action in different components are discussed. Finally, the prospects for the practical application of polymers in Li-S batteries are presented in terms of advanced characterization and mechanistic analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...