Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383805

RESUMO

The hyoid bone displacement and rotation are critical kinematic events of the swallowing process in the assessment of videofluoroscopic swallow studies (VFSS). However, the quantitative analysis of such events requires frame-by-frame manual annotation, which is labor-intensive and time-consuming. Our work aims to develop a method of automatically tracking hyoid bone displacement and rotation in VFSS. We proposed a full high-resolution network, a deep learning architecture, to detect the anterior and posterior of the hyoid bone to identify its location and rotation. Meanwhile, the anterior-inferior corners of the C2 and C4 vertebrae were detected simultaneously to automatically establish a new coordinate system and eliminate the effect of posture change. The proposed model was developed by 59,468 VFSS frames collected from 1488 swallowing samples, and it achieved an average landmark localization error of 2.38 pixels (around 0.5% of the image with 448 × 448 pixels) and an average angle prediction error of 0.065 radians in predicting C2-C4 and hyoid bone angles. In addition, the displacement of the hyoid bone center was automatically tracked on a frame-by-frame analysis, achieving an average mean absolute error of 2.22 pixels and 2.78 pixels in the x-axis and y-axis, respectively. The results of this study support the effectiveness and accuracy of the proposed method in detecting hyoid bone displacement and rotation. Our study provided an automatic method of analyzing hyoid bone kinematics during VFSS, which could contribute to early diagnosis and effective disease management.

2.
Head Neck ; 46(3): 581-591, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133080

RESUMO

BACKGROUND: This pilot study analyzed correlations between tongue electrical impedance myography (EIM), standard tongue electromyography (EMG), and tongue functional measures in N = 4 long-term oropharyngeal cancer (OPC) survivors. METHODS: Patients were screened for a supportive care trial (NCT04151082). Hypoglossal nerve function was evaluated with genioglossus needle EMG, functional measures with the Iowa oral performance instrument (IOPI), and multi-frequency tissue composition with tongue EIM. RESULTS: Tongue EIM conductivity was higher for patients with EMG-confirmed cranial nerve XII neuropathy than those without (p = 0.005) and in patients with mild versus normal EMG reinnervation ratings (16 kHz EIM: p = 0.051). Tongue EIM correlated with IOPI strength measurements (e.g., anterior maximum isometric lingual strength: r2 = 0.62, p = 0.020). CONCLUSIONS: Tongue EIM measures related to tongue strength and the presence of XII neuropathy. Noninvasive tongue EIM may be a convenient adjunctive biomarker to assess tongue health in OPC survivors.


Assuntos
Doenças do Nervo Hipoglosso , Neoplasias Orofaríngeas , Humanos , Impedância Elétrica , Músculo Esquelético , Miografia , Neoplasias Orofaríngeas/terapia , Avaliação de Resultados em Cuidados de Saúde , Projetos Piloto , Sobreviventes , Língua
3.
Laryngoscope ; 133(3): 521-527, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657100

RESUMO

BACKGROUND: Upper esophageal sphincter opening (UESO), and laryngeal vestibule closure (LVC) are two essential kinematic events whose timings are crucial for adequate bolus clearance and airway protection during swallowing. Their temporal characteristics can be quantified through time-consuming analysis of videofluoroscopic swallow studies (VFSS). OBJECTIVES: We sought to establish a model to predict the odds of penetration or aspiration during swallowing based on 15 temporal factors of UES and laryngeal vestibule kinematics. METHODS: Manual temporal measurements and ratings of penetration and aspiration were conducted on a videofluoroscopic dataset of 408 swallows from 99 patients. A generalized estimating equation model was deployed to analyze association between individual factors and the risk of penetration or aspiration. RESULTS: The results indicated that the latencies of laryngeal vestibular events and the time lapse between UESO onset and LVC were highly related to penetration or aspiration. The predictive model incorporating patient demographics and bolus presentation showed that delayed LVC by 0.1 s or delayed LVO by 1% of the swallow duration (average 0.018 s) was associated with a 17.19% and 2.68% increase in odds of airway invasion, respectively. CONCLUSION: This predictive model provides insight into kinematic factors that underscore the interaction between the intricate timing of laryngeal kinematics and airway protection. Recent investigation in automatic noninvasive or videofluoroscopic detection of laryngeal kinematics would provide clinicians access to objective measurements not commonly quantified in VFSS. Consequently, the temporal and sequential understanding of these kinematics may interpret such measurements to an estimation of the risk of aspiration or penetration which would give rise to rapid computer-assisted dysphagia diagnosis. LEVEL OF EVIDENCE: 2 Laryngoscope, 133:521-527, 2023.


Assuntos
Transtornos de Deglutição , Laringe , Humanos , Transtornos de Deglutição/etiologia , Deglutição , Cinerradiografia , Fenômenos Biomecânicos , Fluoroscopia/métodos
4.
IEEE Trans Neural Netw Learn Syst ; 34(10): 6983-7003, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35130174

RESUMO

Artificial intelligence and machine learning techniques have progressed dramatically and become powerful tools required to solve complicated tasks, such as computer vision, speech recognition, and natural language processing. Since these techniques have provided promising and evident results in these fields, they emerged as valuable methods for applications in human physiology and healthcare. General physiological recordings are time-related expressions of bodily processes associated with health or morbidity. Sequence classification, anomaly detection, decision making, and future status prediction drive the learning algorithms to focus on the temporal pattern and model the nonstationary dynamics of the human body. These practical requirements give birth to the use of recurrent neural networks (RNNs), which offer a tractable solution in dealing with physiological time series and provide a way to understand complex time variations and dependencies. The primary objective of this article is to provide an overview of current applications of RNNs in the area of human physiology for automated prediction and diagnosis within different fields. Finally, we highlight some pathways of future RNN developments for human physiology.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Algoritmos , Aprendizado de Máquina , Processamento de Linguagem Natural
5.
Dysphagia ; 37(3): 664-675, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34018024

RESUMO

Few research studies have investigated temporal kinematic swallow events in healthy adults to establish normative reference values. Determining cutoffs for normal and disordered swallowing is vital for differentially diagnosing presbyphagia, variants of normal swallowing, and dysphagia; and for ensuring that different swallowing research laboratories produce consistent results in common measurements from different samples within the same population. High-resolution cervical auscultation (HRCA), a sensor-based dysphagia screening method, has accurately annotated temporal kinematic swallow events in patients with dysphagia, but hasn't been used to annotate temporal kinematic swallow events in healthy adults to establish dysphagia screening cutoffs. This study aimed to determine: (1) Reference values for temporal kinematic swallow events, (2) Whether HRCA can annotate temporal kinematic swallow events in healthy adults. We hypothesized (1) Our reference values would align with a prior study; (2) HRCA would detect temporal kinematic swallow events as accurately as human judges. Trained judges completed temporal kinematic measurements on 659 swallows (N = 70 adults). Swallow reaction time and LVC duration weren't different (p > 0.05) from a previously published historical cohort (114 swallows, N = 38 adults), while other temporal kinematic measurements were different (p < 0.05), suggesting a need for further standardization to feasibly pool data analyses across laboratories. HRCA signal features were used as input to machine learning algorithms and annotated UES opening (69.96% accuracy), UES closure (64.52% accuracy), LVC (52.56% accuracy), and LV re-opening (69.97% accuracy); providing preliminary evidence that HRCA can noninvasively and accurately annotate temporal kinematic measurements in healthy adults to determine dysphagia screening cutoffs.


Assuntos
Transtornos de Deglutição , Adulto , Auscultação/métodos , Fenômenos Biomecânicos , Deglutição , Transtornos de Deglutição/diagnóstico , Humanos , Vida Independente , Longevidade , Valores de Referência
6.
IEEE J Biomed Health Inform ; 26(3): 1263-1272, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34415842

RESUMO

Aspiration is a serious complication of swallowing disorders. Adequate detection of aspiration is essential in dysphagia management and treatment. High-resolution cervical auscultation has been increasingly considered as a promising noninvasive swallowing screening tool and has inspired automatic diagnosis with advanced algorithms. The performance of such algorithms relies heavily on the amount of training data. However, the practical collection of cervical auscultation signal is an expensive and time-consuming process because of the clinical settings and trained experts needed for acquisition and interpretations. Furthermore, the relatively infrequent incidence of severe airway invasion during swallowing studies constrains the performance of machine learning models. Here, we produced supplementary training exemplars for desired class by capturing the underlying distribution of original cervical auscultation signal features using auxiliary classifier Wasserstein generative adversarial networks. A 10-fold subject cross-validation was conducted on 2079 sets of 36-dimensional signal features collected from 189 patients undergoing swallowing examinations. The proposed data augmentation outperforms basic data sampling, cost-sensitive learning and other generative models with significant enhancement. This demonstrates the remarkable potential of proposed network in improving classification performance using cervical auscultation signals and paves the way of developing accurate noninvasive swallowing evaluation in dysphagia care.


Assuntos
Transtornos de Deglutição , Deglutição , Algoritmos , Auscultação/métodos , Transtornos de Deglutição/diagnóstico , Humanos , Aprendizado de Máquina
7.
Med Image Anal ; 74: 102218, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34487983

RESUMO

Judging swallowing kinematic impairments via videofluoroscopy represents the gold standard for the detection and evaluation of swallowing disorders. However, the efficiency and accuracy of such a biomechanical kinematic analysis vary significantly among human judges affected mainly by their training and experience. Here, we showed that a novel machine learning algorithm can with high accuracy automatically detect key anatomical points needed for a routine swallowing assessment in real-time. We trained a novel two-stage convolutional neural network to localize and measure the vertebral bodies using 1518 swallowing videofluoroscopies from 265 patients. Our network model yielded high accuracy as the mean distance between predicted points and annotations was 4.20 ± 5.54 pixels. In comparison, human inter-rater error was 4.35 ± 3.12 pixels. Furthermore, 93% of predicted points were less than five pixels from annotated pixels when tested on an independent dataset from 70 subjects. Our model offers more choices for speech language pathologists in their routine clinical swallowing assessments as it provides an efficient and accurate method for anatomic landmark localization in real-time, a task previously accomplished using an off-line time-sinking procedure.


Assuntos
Aprendizado Profundo , Algoritmos , Vértebras Cervicais/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
8.
J Speech Lang Hear Res ; 64(9): 3416-3431, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34428093

RESUMO

Purpose The prevalence of dysphagia in patients with neurodegenerative diseases (ND) is alarmingly high and frequently results in morbidity and accelerated mortality due to subsequent adverse events (e.g., aspiration pneumonia). Swallowing in patients with ND should be continuously monitored due to the progressive disease nature. Access to instrumental swallow evaluations can be challenging, and limited studies have quantified changes in temporal/spatial swallow kinematic measures in patients with ND. High-resolution cervical auscultation (HRCA), a dysphagia screening method, has accurately differentiated between safe and unsafe swallows, identified swallow kinematic events (e.g., laryngeal vestibule closure [LVC]), and classified swallows between healthy adults and patients with ND. This study aimed to (a) compare temporal/spatial swallow kinematic measures between patients with ND and healthy adults and (b) investigate HRCA's ability to annotate swallow kinematic events in patients with ND. We hypothesized there would be significant differences in temporal/spatial swallow measurements between groups and that HRCA would accurately annotate swallow kinematic events in patients with ND. Method Participants underwent videofluoroscopic swallowing studies with concurrent HRCA. We used linear mixed models to compare temporal/spatial swallow measurements (n = 170 ND patient swallows, n = 171 healthy adult swallows) and deep learning machine-learning algorithms to annotate specific temporal and spatial kinematic events in swallows from patients with ND. Results Differences (p < .05) were found between groups for several temporal and spatial swallow kinematic measures. HRCA signal features were used as input to machine-learning algorithms and annotated upper esophageal sphincter (UES) opening, UES closure, LVC, laryngeal vestibule reopening, and hyoid bone displacement with 66.25%, 85%, 68.18%, 70.45%, and 44.6% accuracy, respectively, compared to human judges' measurements. Conclusion This study demonstrates HRCA's potential in characterizing swallow function in patients with ND and other patient populations.


Assuntos
Transtornos de Deglutição , Doenças Neurodegenerativas , Adulto , Auscultação , Fenômenos Biomecânicos , Deglutição , Transtornos de Deglutição/diagnóstico , Humanos
9.
Future Gener Comput Syst ; 115: 610-618, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33100445

RESUMO

Laryngeal vestibule (LV) closure is a critical physiologic event during swallowing, since it is the first line of defense against food bolus entering the airway. Identifying the laryngeal vestibule status, including closure, reopening and closure duration, provides indispensable references for assessing the risk of dysphagia and neuromuscular function. However, commonly used radiographic examinations, known as videofluoroscopy swallowing studies, are highly constrained by their radiation exposure and cost. Here, we introduce a non-invasive sensor-based system, that acquires high-resolution cervical auscultation signals from neck and accommodates advanced deep learning techniques for the detection of LV behaviors. The deep learning algorithm, which combined convolutional and recurrent neural networks, was developed with a dataset of 588 swallows from 120 patients with suspected dysphagia and further clinically tested on 45 samples from 16 healthy participants. For classifying the LV closure and opening statuses, our method achieved 78.94% and 74.89% accuracies for these two datasets, suggesting the feasibility of implementing sensor signals for LV prediction without traditional videofluoroscopy screening methods. The sensor supported system offers a broadly applicable computational approach for clinical diagnosis and biofeedback purposes in patients with swallowing disorders without the use of radiographic examination.

10.
Dysphagia ; 36(2): 259-269, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32419103

RESUMO

Identifying physiological impairments of swallowing is essential for determining accurate diagnosis and appropriate treatment for patients with dysphagia. The hyoid bone is an anatomical landmark commonly monitored during analysis of videofluoroscopic swallow studies (VFSSs). Its displacement is predictive of penetration/aspiration and is associated with other swallow kinematic events. However, VFSSs are not always readily available/feasible and expose patients to radiation. High-resolution cervical auscultation (HRCA), which uses acoustic and vibratory signals from a microphone and tri-axial accelerometer, is under investigation as a non-invasive dysphagia screening method and potential adjunct to VFSS when it is unavailable or not feasible. We investigated the ability of HRCA to independently track hyoid bone displacement during swallowing with similar accuracy to VFSS, by analyzing vibratory signals from a tri-axial accelerometer using machine learning techniques. We hypothesized HRCA would track hyoid bone displacement with a high degree of accuracy compared to humans. Trained judges completed frame-by-frame analysis of hyoid bone displacement on 400 swallows from 114 patients and 48 swallows from 16 age-matched healthy adults. Extracted features from vibratory signals were used to train the predictive algorithm to generate a bounding box surrounding the hyoid body on each frame. A metric of relative overlapped percentage (ROP) compared human and machine ratings. The mean ROP for all swallows analyzed was 50.75%, indicating > 50% of the bounding box containing the hyoid bone was accurately predicted in every frame. This provides evidence of the feasibility of accurate, automated hyoid bone displacement tracking using HRCA signals without use of VFSS images.


Assuntos
Transtornos de Deglutição , Deglutição , Adulto , Cinerradiografia , Transtornos de Deglutição/diagnóstico por imagem , Humanos , Osso Hioide/diagnóstico por imagem , Aprendizado de Máquina
11.
Perspect ASHA Spec Interest Groups ; 5(6): 1647-1656, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35937555

RESUMO

Purpose: Safe swallowing requires adequate protection of the airway to prevent swallowed materials from entering the trachea or lungs (i.e., aspiration). Laryngeal vestibule closure (LVC) is the first line of defense against swallowed materials entering the airway. Absent LVC or mistimed/ shortened closure duration can lead to aspiration, adverse medical consequences, and even death. LVC mechanisms can be judged commonly through the videofluoroscopic swallowing study; however, this type of instrumentation exposes patients to radiation and is not available or acceptable to all patients. There is growing interest in noninvasive methods to assess/monitor swallow physiology. In this study, we hypothesized that our noninvasive sensor- based system, which has been shown to accurately track hyoid displacement and upper esophageal sphincter opening duration during swallowing, could predict laryngeal vestibule status, including the onset of LVC and the onset of laryngeal vestibule reopening, in real time and estimate the closure duration with a comparable degree of accuracy as trained human raters. Method: The sensor-based system used in this study is high-resolution cervical auscultation (HRCA). Advanced machine learning techniques enable HRCA signal analysis through feature extraction and complex algorithms. A deep learning model was developed with a data set of 588 swallows from 120 patients with suspected dysphagia and further tested on 45 swallows from 16 healthy participants. Results: The new technique achieved an overall mean accuracy of 74.90% and 75.48% for the two data sets, respectively, in distinguishing LVC status. Closure duration ratios between automated and gold-standard human judgment of LVC duration were 1.13 for the patient data set and 0.93 for the healthy participant data set. Conclusions: This study found that HRCA signal analysis using advanced machine learning techniques can effectively predict laryngeal vestibule status (closure or opening) and further estimate LVC duration. HRCA is potentially a noninvasive tool to estimate LVC duration for diagnostic and biofeedback purposes without X-ray imaging.

12.
R Soc Open Sci ; 6(7): 181982, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417694

RESUMO

Hyoid bone movement is an important physiological event during swallowing that contributes to normal swallowing function. In order to determine the adequate hyoid bone movement, clinicians conduct an X-ray videofluoroscopic swallowing study, which even though it is the gold-standard technique, has limitations such as radiation exposure and cost. Here, we demonstrated the ability to track the hyoid bone movement using a non-invasive accelerometry sensor attached to the surface of the human neck. Specifically, deep neural networks were used to mathematically describe the relationship between hyoid bone movement and sensor signals. Training and validation of the system were conducted on a dataset of 400 swallows from 114 patients. Our experiments indicated the computer-aided hyoid bone movement prediction has a promising performance when compared with human experts' judgements, revealing that the universal pattern of the hyoid bone movement is acquirable by the highly nonlinear algorithm. Such a sensor-supported strategy offers an alternative and widely available method for online hyoid bone movement tracking without any radiation side-effects and provides a pronounced and flexible approach for identifying dysphagia and other swallowing disorders.

13.
Measurement (Lond) ; 109: 316-325, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29203949

RESUMO

Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.

14.
Bioelectromagnetics ; 35(7): 512-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25196478

RESUMO

The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity.


Assuntos
Epitélio/efeitos da radiação , Cristalino/efeitos da radiação , Campos Magnéticos , Tecnologia sem Fio , Apoptose/efeitos da radiação , Linhagem Celular , Proliferação de Células/efeitos da radiação , Ensaio Cometa , Dano ao DNA/efeitos da radiação , Citometria de Fluxo , Histonas/genética , Histonas/efeitos da radiação , Humanos , Microscopia de Fluorescência , Testes de Mutagenicidade , Fosforilação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...