Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 17(4): 911-919, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472493

RESUMO

Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration. Therefore, investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the molecular mechanisms and signal cascades underlying peripheral nerve repair and provide potential strategies for improving the low axon regeneration capacity of the central nervous system. In this study, we applied weighted gene co-expression network analysis to identify differentially expressed genes in proximal and distal sciatic nerve segments from rats with sciatic nerve injury. We identified 31 and 15 co-expression modules from the proximal and distal sciatic nerve segments, respectively. Functional enrichment analysis revealed that the differentially expressed genes in proximal modules promoted regeneration, while the differentially expressed genes in distal modules promoted neurodegeneration. Next, we constructed hub gene networks for selected modules and identified a key hub gene, Kif22, which was up-regulated in both nerve segments. In vitro experiments confirmed that Kif22 knockdown inhibited proliferation and migration of Schwann cells by modulating the activity of the extracellular signal-regulated kinase signaling pathway. Collectively, our findings provide a comparative framework of gene modules that are co-expressed in injured proximal and distal sciatic nerve segments, and identify Kif22 as a potential therapeutic target for promoting peripheral nerve injury repair via Schwann cell proliferation and migration. All animal experiments were approved by the Institutional Animal Ethics Committee of Nantong University, China (approval No. S20210322-008) on March 22, 2021.

2.
Neural Regen Res ; 13(9): 1622-1627, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30127124

RESUMO

The peripheral nervous system has the potential to regenerate after nerve injury owing to the intrinsic regrowth ability of neurons and the permissive microenvironment. The regenerative process involves numerous gene expression changes, in which transcription factors play a critical role. Previously, we profiled dysregulated genes in dorsal root ganglion neurons at different time points (0, 3 and 9 hours, and 1, 4 and 7 days) after sciatic nerve injury in rats by RNA sequencing. In the present study, we investigated differentially expressed transcription factors following nerve injury, and we identified enriched molecular and cellular functions of these transcription factors by Ingenuity Pathway Analysis. This analysis revealed the dynamic changes in the expression of transcription factors involved in cell death at different time points following sciatic nerve injury. In addition, we constructed regulatory networks of the differentially expressed transcription factors in cell death and identified some key transcription factors (such as STAT1, JUN, MYC and IRF7). We confirmed the changes in expression of some key transcription factors (STAT1 and IRF7) by quantitative reverse transcription-polymerase chain reaction. Collectively, our analyses provide a global overview of transcription factor changes in dorsal root ganglia after sciatic nerve injury and offer insight into the regulatory transcription factor networks involved in cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA