Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 7: e612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307863

RESUMO

A global path planning algorithm for unmanned surface vehicles (USVs) with short time requirements in large-scale and complex multi-island marine environments is proposed. The fast marching method-based path planning for USVs is performed on grid maps, resulting in a decrease in computer efficiency for larger maps. This can be mitigated by improving the algorithm process. In the proposed algorithm, path planning is performed twice in maps with different spatial resolution (SR) grids. The first path planning is performed in a low SR grid map to determine effective regions, and the second is executed in a high SR grid map to rapidly acquire the final high precision global path. In each path planning process, a modified inshore-distance-constraint fast marching square (IDC-FM2) method is applied. Based on this method, the path portions around an obstacle can be constrained within a region determined by two inshore-distance parameters. The path planning results show that the proposed algorithm can generate smooth and safe global paths wherein the portions that bypass obstacles can be flexibly modified. Compared with the path planning based on the IDC-FM2 method applied to a single grid map, this algorithm can significantly improve the calculation efficiency while maintaining the precision of the planned path.

2.
Sensors (Basel) ; 18(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544546

RESUMO

This paper addresses the direction-of-arrival (DOA) estimation problem using a uniform rectangular array with electromagnetic vector-sensors in correlated/coherent signal environments. The polarization information is separated from the steering matrix to decorrelate the signals. By developing a tensorial structured received measurements of the array, we propose a tensor-based eigenvector DOA estimation method. Then we apply the forward-backward averaging to the tensor since it obeys the centro-Hermitian structure. In addition, a tensor-based polarization parameters estimation method is presented. The proposed algorithms are superior to the state-of-the-art algorithms in terms of estimation accuracy of coherent signals while only demand a modest computation burden comparing with the latter ones. Simulation results are given to demonstrate the effectiveness of the proposed methods under different scenarios.

3.
Sensors (Basel) ; 16(9)2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27649191

RESUMO

Based on sparse representations, the problem of two-dimensional (2-D) direction of arrival (DOA) estimation is addressed in this paper. A novel sparse 2-D DOA estimation method, called Dimension Reduction Sparse Reconstruction (DRSR), is proposed with pairing by Spatial Spectrum Reconstruction of Sub-Dictionary (SSRSD). By utilizing the angle decoupling method, which transforms a 2-D estimation into two independent one-dimensional (1-D) estimations, the high computational complexity induced by a large 2-D redundant dictionary is greatly reduced. Furthermore, a new angle matching scheme, SSRSD, which is less sensitive to the sparse reconstruction error with higher pair-matching probability, is introduced. The proposed method can be applied to any type of orthogonal array without requirement of a large number of snapshots and a priori knowledge of the number of signals. The theoretical analyses and simulation results show that the DRSR-SSRSD method performs well for coherent signals, which performance approaches Cramer-Rao bound (CRB), even under a single snapshot and low signal-to-noise ratio (SNR) condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...