Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemosphere ; 328: 138553, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37004820

RESUMO

The coaxial electrospinning method for preparation of g-C3N4/polyacrylonitrile (PAN)/polyaniline (PANI)@LaFeO3 cable fiber membrane (PC@PL) was designed for adsorption-filtration-photodegradation of pollutants. A series of characterization results show that LaFeO3 and g-C3N4 nanoparticles (NPs) are respectively loaded in the inner and outer layers of PAN/PANI composite fibers to construct the site-specific Z-type heterojunction system with spatially separated morphologies. The PANI in cable not only possesses abundant exposed amino/imino functional groups for adsorption of contaminant molecules but also due to the excellent electrical conductivity works as a redox medium for collecting and consuming the electrons and holes from LaFeO3 and g-C3N4, which can efficiently promote photo-generated charge carriers separation and improve the catalytic performance. Further investigations demonstrate that as a photo-Fenton catalyst LaFeO3 in PC@PL catalyzes/activates the H2O2 generated in situ by LaFeO3/g-C3N4, further enhancing the decontamination efficiency of the PC@PL. The porous, hydrophilic, antifouling, flexible and reusable properties of the PC@PL membrane significantly enhance the mass transfer efficiency of reactants by filtration effect and increase the amount of dissolved oxygen, thus producing massive •OH for degradation of pollutants, which maintains the water flux (1184 L m-2. h-1 (LMH)) and the rejection rate (98.5%). Profiting from its unique synergistic effect of adsorption, photo-Fenton and filtration, PC@PL exhibits wonderful self-cleaning performance and distinguished removal rate for methylene blue (97.0%), methyl violet (94.3%), ciprofloxacin (87.6%) and acetamiprid (88.9%) within 75 min, disinfection (100% Escherichia coli (E. coli) and 80% Staphylococcus aureus (S.aureus) inactivation)) and excellent cycle stability.


Assuntos
Nanofibras , Escherichia coli , Peróxido de Hidrogênio
2.
J Colloid Interface Sci ; 644: 29-41, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094470

RESUMO

A novel MoS2/polyaniline (PANI)/polyacrylonitrile (PAN)@BiFeO3 bilayer hollow nanofiber membrane (PPBM-H) was successfully synthesized by coaxial electrospinning technique. In the nanofiber, BiFeO3 nanoparticles (NPs) and MoS2 nanosheets (NSs) were loaded in the middle and outer layers of the PANI/PAN composites, respectively, which constructs a type II heterojunction with spatially separated microtopography, thus significantly improving the charge separation in photocatalysis. Moreover, the hollow structure and the vast number of exposed groups on the surface of PPBM-H help to improve the mass transfer efficiency and pollutant adsorption performance in wastewater treatment. In addition, PPBM-H can generate H2O2 by in-situ activation of BiFeO3/MoS2 for photo-Fenton catalysis, enabling Fe3+ and Fe2+ recycling. Also, PPBM-H can produce piezoelectric polarisation under ultrasonic excitation, which can further enhance the efficiency of electron/hole separation and transfer, and induce the generation of active free radicals. Owing to its wonderful self-cleaning effect, the PPBM-H has good mechanical strength (2.95 Mpa), hydrophilicity (11.6°), water flux (1248 L·m-2·h-1), BSA rejection (98.8 %), and exhibits distinguished photocatalytic filtration efficiencies (99.5 % tetracycline hydrochloride (TCH) and 99.9 % methyl orange (MO) within 60 min), piezo-photocatalysis (99.2 % TCH within 2 h), disinfection performance for Escherichia coli (E. coli) (100 %, within 60 min).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...