Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(6): 914-922, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337630

RESUMO

As the guardian of the genome, p53 is well known for its tumor suppressor function in humans, controlling cell proliferation, senescence, DNA repair and cell death in cancer through transcriptional and non-transcriptional activities. p53 is the most frequently mutated gene in human cancer, but how its mutation or depletion leads to tumorigenesis still remains poorly understood. Recently, there has been increasing evidence that p53 plays a vital role in regulating cellular metabolism as well as in metabolic adaptation to nutrient starvation. In contrast, mutant p53 proteins, especially those harboring missense mutations, have completely different functions compared to wild-type p53. In this review, we briefly summarize what is known about p53 mediating anabolic and catabolic metabolism in cancer, and in particular discuss recent findings describing how metabolites regulate p53 functions. To illustrate the variability and complexity of p53 function in metabolism, we will also review the differential regulation of metabolism by wild-type and mutant p53.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias/metabolismo , Carcinogênese , Mutação , Metabolismo Energético/genética
2.
Nat Metab ; 4(2): 225-238, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35228743

RESUMO

Many types of cancer feature TP53 mutations with oncogenic properties. However, whether the oncogenic activity of mutant p53 is affected by the cellular metabolic state is unknown. Here we show that cancer-associated mutant p53 protein is stabilized by 2-hydroxyglutarate generated by malic enzyme 2. Mechanistically, malic enzyme 2 promotes the production of 2-hydroxyglutarate by adjusting glutaminolysis, as well as through a reaction that requires pyruvate and NADPH. Malic enzyme 2 depletion decreases cellular 2-hydroxyglutarate levels in vitro and in vivo, whereas elevated malic enzyme 2 expression increases 2-hydroxyglutarate production. We further show that 2-hydroxyglutarate binds directly to mutant p53, which reduces Mdm2-mediated mutant p53 ubiquitination and degradation. 2-Hydroxyglutarate supplementation is sufficient for maintaining mutant p53 protein stability in malic enzyme 2-depleted cells, and restores tumour growth of malic enzyme 2-ablated cells, but not of cells that lack mutant p53. Our findings reveal the previously unrecognized versatility of malic enzyme 2 catalytic functions, and uncover a role for mutant p53 in sensing cellular 2-hydroxyglutarate levels, which contribute to the stabilization of mutant p53 and tumour growth.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Carcinogênese , Glutaratos , Humanos , Malato Desidrogenase , Neoplasias/genética , Neoplasias/metabolismo , Estabilidade Proteica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Mol Cell ; 82(3): 527-541.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35016033

RESUMO

Citrulline can be converted into argininosuccinate by argininosuccinate synthetase (ASS1) in the urea cycle and the citrulline-nitric oxide cycle. However, the regulation and biological function of citrulline metabolism remain obscure in the immune system. Unexpectedly, we found that macrophage citrulline declines rapidly after interferon gamma (IFN-γ) and/or lipopolysaccharide (LPS) stimulation, which is required for efficient proinflammatory signaling activation. Mechanistically, IFN-γ and/or LPS stimulation promotes signal transducers and activators of transcription 1 (STAT1)-mediated ASS1 transcription and Janus kinase2 (JAK2)-mediated phosphorylation of ASS1 at tyrosine 87, thereby leading to citrulline depletion. Reciprocally, increased citrulline directly binds to JAK2 and inhibits JAK2-STAT1 signaling. Blockage of ASS1-mediated citrulline depletion suppresses the host defense against bacterial infection in vivo. We therefore define a central role for ASS1 in controlling inflammatory macrophage activation and antibacterial defense through depletion of cellular citrulline and, further, identify citrulline as an innate immune-signaling metabolite that engages a metabolic checkpoint for proinflammatory responses.


Assuntos
Argininossuccinato Sintase/metabolismo , Citrulina/metabolismo , Imunidade Inata , Inflamação/enzimologia , Listeriose/enzimologia , Ativação de Macrófagos , Macrófagos/enzimologia , Animais , Argininossuccinato Sintase/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Listeria monocytogenes/imunologia , Listeriose/genética , Listeriose/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Células RAW 264.7 , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
4.
Elife ; 82019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31290744

RESUMO

B lymphocytes use B cell receptors (BCRs) to recognize antigens. It is still not clear how BCR transduces antigen-specific physical signals upon binding across cell membrane for the conversion to chemical signals, triggering downstream signaling cascades. It is hypothesized that through a series of conformational changes within BCR, antigen engagement in the extracellular domain of BCR is transduced to its intracellular domain. By combining site-specific labeling methodology and FRET-based assay, we monitored conformational changes in the extracellular domains within BCR upon antigen engagement. Conformational changes within heavy chain of membrane-bound immunoglobulin (mIg), as well as conformational changes in the spatial relationship between mIg and Igß were observed. These conformational changes were correlated with the strength of BCR activation and were distinct in IgM- and IgG-BCR. These findings provide molecular mechanisms to explain the fundamental aspects of BCR activation and a framework to investigate ligand-induced molecular events in immune receptors.


Assuntos
Antígenos/metabolismo , Linfócitos B/fisiologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligação Proteica , Conformação Proteica
5.
Nature ; 569(7758): E10, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31086338

RESUMO

In Fig. 1c of this Letter, the labels p53+/+ and p53-/- were inadvertently swapped. The original figure has been corrected online.

6.
Nature ; 567(7747): 253-256, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842655

RESUMO

Cancer cells exhibit altered and usually increased metabolic processes to meet their high biogenetic demands1,2. Under these conditions, ammonia is concomitantly produced by the increased metabolic processing. However, it is unclear how tumour cells dispose of excess ammonia and what outcomes might be caused by the accumulation of ammonia. Here we report that the tumour suppressor p53, the most frequently mutated gene in human tumours, regulates ammonia metabolism by repressing the urea cycle. Through transcriptional downregulation of CPS1, OTC and ARG1, p53 suppresses ureagenesis and elimination of ammonia in vitro and in vivo, leading to the inhibition of tumour growth. Conversely, downregulation of these genes reciprocally activates p53 by MDM2-mediated mechanism(s). Furthermore, the accumulation of ammonia causes a significant decline in mRNA translation of the polyamine biosynthetic rate-limiting enzyme ODC, thereby inhibiting the biosynthesis of polyamine and cell proliferation. Together, these findings link p53 to ureagenesis and ammonia metabolism, and further reveal a role for ammonia in controlling polyamine biosynthesis and cell proliferation.


Assuntos
Amônia/metabolismo , Regulação da Expressão Gênica/genética , Poliaminas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ureia/metabolismo , Arginase/genética , Carbamoil-Fosfato Sintase (Amônia)/genética , Proliferação de Células , Humanos , Neoplasias/genética , Neoplasias/patologia , Ornitina Carbamoiltransferase/genética , Ornitina Descarboxilase/biossíntese , Ornitina Descarboxilase/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/genética
7.
Chronobiol Int ; 32(10): 1458-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26595385

RESUMO

Synchrony between circadian and metabolic processes is critical to the maintenance of energy homeostasis. Studies on essence of chicken (EC), a chicken meat extract rich in proteins, amino acids and peptides, showed its effectiveness in alleviating fatigue and promoting metabolism. A recent study revealed that it facilitated the re-entrainment of clock genes (Bmal1, Cry1, Dec1, Per1 and Per2) in the pineal gland and liver in a rat model of circadian disruption. Here, we investigated the role of EC-facilitated circadian synchrony in the maintenance of the energy homeostasis using a mouse model of prolonged circadian disruption. Prolonged circadian disruption (12 weeks) resulted in hepatic maladaptation, manifested by a mild but significant (p < 0.05) hepatomegaly, accompanied by disturbed hepatic lipid metabolism and liver injury (indicated by increased circulating hepatic enzymes). Evidently, there was marked elevations of hepatic inflammatory mediators (interleukin-1beta and interleukin-6), suggesting an underlying inflammation leading to the hepatic injury and functional impairment. Importantly, the disruption paradigm caused the decoupling between key metabolic regulators (e.g. mTOR and AMPK) and hepatic clock genes (Per1, Cry1, Dec1, Bmal1). Further, we showed that the loss of circadian synchrony between the master and hepatic clock genes (Per1, Cry1, Dec1, Bmal1) could be the underlying cause of the maladaptation. When supplemented with EC, the functional impairment and inflammation were abolished. The protective effects could be linked to its effectiveness in maintaining the synchrony between the master and hepatic clocks, and the resultant improved coupling of the circadian oscillators (Per1, Cry1, Dec1, Bmal1) and metabolic regulators (mTOR, AMPK). Overall, EC supplementation promoted the physiological adaptation to the prolonged circadian disruption through facilitation of endogenous circadian synchrony and the coupling of circadian oscillators and metabolic regulators. This forms an important basis for further elucidation of the physiological benefits of EC-facilitated circadian synchrony.


Assuntos
Adaptação Fisiológica/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Fígado/metabolismo , Animais , Comportamento Animal , Galinhas , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Circadianas Period/genética
8.
J Nutr Sci Vitaminol (Tokyo) ; 61 Suppl: S89-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26598902

RESUMO

The circadian rhythm is generally existed in mammalian behavior and metabolic processes, which results from the self-sustained circadian clocks. The mammalian circadian clocks are composed of a master clock located in the hypothalamic suprachiasmatic nucleus (SCN), and of many peripheral clocks in tissues and extra-SCN brain regions. It is indicated that feeding could take over part of the SCN signaling, and affect internal synchrony between the master clock and the peripheral clocks. Thus, recent studies focus more on the relationship between the nutrients and circadian rhythms. Various nutrient components (glucose, amino acid, alcohol) are found to be able to directly affect the circadian rhythm of clock genes. Moreover, the feeding schedule of nutrients is as important as the nutrient components in maintaining a healthy circadian rhythm. Therefore, the circadian homeostasis needs not only balanced nutrient components but also regular timed nutrients.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Micronutrientes/farmacologia , Animais , Relógios Circadianos , Homeostase , Mamíferos , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...