Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Res ; 34(1): 13-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163844

RESUMO

Oxidative phosphorylation (OXPHOS) consumes oxygen to produce ATP. However, the mechanism that balances OXPHOS activity and intracellular oxygen availability remains elusive. Here, we report that mitochondrial protein lactylation is induced by intracellular hypoxia to constrain OXPHOS. We show that mitochondrial alanyl-tRNA synthetase (AARS2) is a protein lysine lactyltransferase, whose proteasomal degradation is enhanced by proline 377 hydroxylation catalyzed by the oxygen-sensing hydroxylase PHD2. Hypoxia induces AARS2 accumulation to lactylate PDHA1 lysine 336 in the pyruvate dehydrogenase complex and carnitine palmitoyltransferase 2 (CPT2) lysine 457/8, inactivating both enzymes and inhibiting OXPHOS by limiting acetyl-CoA influx from pyruvate and fatty acid oxidation, respectively. PDHA1 and CPT2 lactylation can be reversed by SIRT3 to activate OXPHOS. In mouse muscle cells, lactylation is induced by lactate oxidation-induced intracellular hypoxia during exercise to constrain high-intensity endurance running exhaustion time, which can be increased or decreased by decreasing or increasing lactylation levels, respectively. Our results reveal that mitochondrial protein lactylation integrates intracellular hypoxia and lactate signals to regulate OXPHOS.


Assuntos
Proteínas Mitocondriais , Fosforilação Oxidativa , Camundongos , Animais , Proteínas Mitocondriais/metabolismo , Lisina/metabolismo , Hipóxia , Oxigênio , Lactatos
2.
Nat Metab ; 3(6): 859-875, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140692

RESUMO

Global histone acetylation varies with changes in the nutrient and cell cycle phases; however, the mechanisms connecting these variations are not fully understood. Herein, we report that nutrient-related and cell-cycle-regulated nuclear acetate regulates global histone acetylation. Histone deacetylation-generated acetate accumulates in the nucleus and induces histone hyperacetylation. The nuclear acetate levels were controlled by glycolytic enzyme triosephosphate isomerase 1 (TPI1). Cyclin-dependent kinase 2 (CDK2), which is phosphorylated and activated by nutrient-activated mTORC1, phosphorylates TPI1 Ser 117 and promotes nuclear translocation of TPI1, decreases nuclear dihydroxyacetone phosphate (DHAP) and induces nuclear acetate accumulation because DHAP scavenges acetate via the formation of 1-acetyl-DHAP. CDK2 accumulates in the cytosol during the late G1/S phases. Inactivation or blockade of nuclear translocation of TPI1 abrogates nutrient-dependent and cell-cycle-dependent global histone acetylation, chromatin condensation, gene transcription and DNA replication. These results identify the mechanism of maintaining global histone acetylation by nutrient and cell cycle signals.


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Histonas/metabolismo , Nutrientes/metabolismo , Transdução de Sinais , Acetatos/metabolismo , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA , Humanos , Fosforilação , Transcrição Gênica
3.
Environ Res ; 181: 108909, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31776016

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic pollutants found in various environmental media, and there is growing evidence that PCBs may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The purposes of this study were to investigate whether environmental level of Aroclor 1254 (a commercial mixture of PCBs) exposure to adolescent male mice could induce the development of NAFLD and the mechanisms involved. Twenty-one-day-old male C57BL/6 mice were exposed to Aroclor 1254 (0.5-500 µg/kg body weight) by oral gavage once every third day for 60 days. The results showed that exposure to Aroclor 1254 increased body weight and decreased the liver-somatic index in a dose-dependent manner. Aroclor 1254 administration increased lipid accumulation in the liver and induced the mRNA expression of genes associated with lipogenesis, including acetyl-CoA carboxylase 1 (Acc1), acetyl-CoA carboxylase 2 (Acc2) and fatty acid synthase (Fasn). Moreover, Aroclor 1254 decreased peroxisome proliferator-activated receptor alpha (PPARα) signaling and lipid oxidation. In addition, we found that Aroclor 1254 administration induced oxidative stress in mouse liver and elevated the protein level of cyclooxygenase 2 (COX-2), an inflammatory molecule, possibly via the endoplasmic reticulum (ER) stress inositol-requiring enzyme 1α-X-box-binding protein-1 (IRE1α-XBP1) pathway, but not the nuclear factor-κB (NF-κB) pathway. In summary, adolescent exposure to environmental level of PCBs stimulated oxidative stress, ER stress and the inflammatory response and caused NAFLD in male mice. This work provides new insight into the idea that adolescent exposure to environmental level of PCBs might induce the development of NAFLD under the regulation of ER stress in males.


Assuntos
Poluentes Ambientais/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Bifenilos Policlorados/toxicidade , Animais , Endorribonucleases , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases
4.
Cell Metab ; 27(1): 151-166.e6, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29198988

RESUMO

Amino acids are known regulators of cellular signaling and physiology, but how they are sensed intracellularly is not fully understood. Herein, we report that each aminoacyl-tRNA synthetase (ARS) senses its cognate amino acid sufficiency through catalyzing the formation of lysine aminoacylation (K-AA) on its specific substrate proteins. At physiologic levels, amino acids promote ARSs bound to their substrates and form K-AAs on the ɛ-amine of lysines in their substrates by producing reactive aminoacyl adenylates. The K-AA marks can be removed by deacetylases, such as SIRT1 and SIRT3, employing the same mechanism as that involved in deacetylation. These dynamically regulated K-AAs transduce signals of their respective amino acids. Reversible leucylation on ras-related GTP-binding protein A/B regulates activity of the mammalian target of rapamycin complex 1. Glutaminylation on apoptosis signal-regulating kinase 1 suppresses apoptosis. We discovered non-canonical functions of ARSs and revealed systematic and functional amino acid sensing and signal transduction networks.


Assuntos
Aminoacilação , Espaço Intracelular/metabolismo , Lisina/metabolismo , Transdução de Sinais , Aminoacil-tRNA Sintetases/metabolismo , Apoptose , Biocatálise , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...