Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971646

RESUMO

OBJECTIVE@#Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-β/small mothers against decapentaplegic (TGF-β/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-β/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis.@*METHODS@#The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-β/Smad signaling pathway-related proteins were determined using Western blotting.@*RESULTS@#Lnc-C18orf26-1 was upregulated in TGF-β1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-β1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-β1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-β1, TGF-β type I receptor (TGF-βRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment.@*CONCLUSION@#Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-β1/TGF-βRI/p-Smad2 axis.


Assuntos
Humanos , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , RNA Longo não Codificante/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , MicroRNAs/genética , Células Estreladas do Fígado/patologia , Cirrose Hepática/metabolismo , Proliferação de Células , Fatores de Crescimento Transformadores/farmacologia
2.
Syst Biol ; 65(1): 66-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26385618

RESUMO

Deep phylogenetic relationships of the largest salamander family Plethodontidae have been difficult to resolve, probably reflecting a rapid diversification early in their evolutionary history. Here, data from 50 independent nuclear markers (total 48,582 bp) are used to reconstruct the phylogeny and divergence times for plethodontid salamanders, using both concatenation and coalescence-based species tree analyses. Our results robustly resolve the position of the enigmatic eastern North American four-toed salamander (Hemidactylium) as the sister taxon of Batrachoseps + Tribe Bolitoglossini, thus settling a long-standing question. Furthermore, we statistically reject sister taxon status of Karsenia and Hydromantes, the only plethodontids to occur outside the Americas, leading us to new biogeographic hypotheses. Contrary to previous long-standing arguments that plethodontid salamanders are an old lineage originating in the Cretaceous (more than 90 Ma), our analyses lead to the hypothesis that these salamanders are much younger, arising close to the K-T boundary (~66 Ma). These time estimates are highly stable using alternative calibration schemes and dating methods. Our data simulation highlights the potential risk of making strong arguments about phylogenetic timing based on inferences from a handful of nuclear genes, a common practice. Based on the newly obtained timetree and ancestral area reconstruction results, we argue that (i) the classic "Out of Appalachia" hypothesis of plethodontid origins is problematic; (ii) the common ancestor of extant plethodontids may have originated in northwestern North America in the early Paleocene; (iii) origins of Eurasian plethodontids likely result from two separate dispersal events from western North America via Beringia in the late Eocene (~42 Ma) and the early Miocene (~23 Ma), respectively.


Assuntos
Filogenia , Urodelos/classificação , Urodelos/genética , Distribuição Animal , Animais , Dados de Sequência Molecular , América do Norte , Análise de Sequência de DNA , Tempo
3.
Mol Phylogenet Evol ; 83: 1-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25462999

RESUMO

Although several recent studies have investigated the major phylogenetic relationships within Hynobiidae, their evolutionary history remains partially resolved and the phylogenetic positions of some genera, particularly Pachyhynobius and Salamandrella are still disputed. Notably, previous studies relied primarily on mitochondrial DNA data and concatenated analyses; thus, a new investigation based on multiple nuclear genes and species-tree inference is needed. Here, we provide an in-depth phylogenetic analysis, based on 29 nuclear genes comprising 29,232bp of data from a comprehensive taxonomic sampling (24 hynobiids and 7 outgroups), using both concatenated and species-tree methods. Our results robustly resolved most genus-level relationships within Hynobiidae, including the placement of Salamandrella as the sister group to a clade containing Batrachuperus, Liua and Pseudohynobius, and the placement of Pachyhynobius as the sister group to a clade containing all hynobiids excluding Onychodactylus, Paradactylodon and Ranodon. Time estimates based on our data suggest that the major group of living hynobiids (excluding Onychodactylus) originated approximately 40Ma, ∼50% younger than estimates from mtDNA data (62.5Ma) but 10% older than estimates from three nuclear genes (36Ma). Our results highlight the benefits of using a large number of nuclear loci to infer both phylogeny and time for relatively old lineages.


Assuntos
Evolução Biológica , Núcleo Celular/genética , Filogenia , Urodelos/classificação , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Funções Verossimilhança , Análise de Sequência de DNA , Urodelos/genética
4.
Mol Biol Evol ; 30(8): 1899-915, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666244

RESUMO

Anura (frogs and toads) constitute over 88% of living amphibian diversity but many important questions about their phylogeny and evolution remain unresolved. For this study, we developed an efficient method for sequencing anuran mitochondrial DNAs (mtDNAs) by amplifying the mitochondrial genome in 12 overlapping fragments using frog-specific universal primer sets. Based on this method, we generated 47 nearly complete, new anuran mitochondrial genomes and discovered nine novel gene arrangements. By combining the new data and published anuran mitochondrial genomes, we assembled a large mitogenomic data set (11,007 nt) including 90 frog species, representing 39 of 53 recognized anuran families, to investigate their phylogenetic relationships and evolutionary history. The resulting tree strongly supported a paraphyletic arrangement of archaeobatrachian (=nonneobatrachian) frogs, with Leiopelmatoidea branching first, followed by Discoglossoidea, Pipoidea, and Pelobatoidea. Within Neobatrachia, the South African Heleophrynidae is the sister-taxon to all other neobatrachian frogs and the Seychelles-endemic Sooglossidae is recovered as the sister-taxon to Ranoidea. These phylogenetic relationships agree with many nuclear gene studies. The chronogram derived from two Bayesian relaxed clock methods (MultiDivTime and BEAST) suggests that modern frogs (Anura) originated in the early Triassic about 244 Ma and the appearance of Neobatrachia took place in the late Jurassic about 163 Ma. The initial diversifications of two species-rich superfamilies Hyloidea and Ranoidea commenced 110 and 133 Ma, respectively. These times are older than some other estimates by approximately 30-40 My. Compared with nuclear data, mtDNA produces compatible time estimates for deep nodes (>150 Ma), but apparently older estimates for more shallow nodes. Our study shows that, although it evolves relatively rapidly and behaves much as a single locus, mtDNA performs well for both phylogenetic and divergence time inferences and will provide important reference hypotheses for the phylogeny and evolution of frogs.


Assuntos
Anuros/classificação , Anuros/genética , Evolução Biológica , DNA Mitocondrial/genética , Filogenia , Animais , Teorema de Bayes , Evolução Molecular , Ordem dos Genes , Rearranjo Gênico , Genoma Mitocondrial , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...