Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 691: 29-59, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914450

RESUMO

DNA polymerases are important tools for biotechnology, synthetic biology, and chemical biology as they are routinely used to amplify and edit genetic information. However, natural polymerases do not recognize artificial genetic polymers (also known as xeno-nucleic acids or XNAs) with unique sugar-phosphate backbone structures. Directed evolution offers a possible solution to this problem by facilitating the discovery of engineered versions of natural polymerases that can copy genetic information back and forth between DNA and XNA. Here we report a directed evolution strategy for discovering polymerases that can synthesize threose nucleic acid (TNA) on DNA templates. The workflow involves library generation and expression in E. coli, high-throughput microfluidics-based screening of uniform water-in-oil droplets, plasmid recovery, secondary screening, and library regeneration. This technique is sufficiently general that it could be applied to a wide range of problems involving DNA modifying enzymes.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , Escherichia coli/genética , Escherichia coli/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA/genética
2.
J Am Chem Soc ; 143(42): 17761-17768, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637287

RESUMO

Expanding the chemical space of evolvable non-natural genetic polymers (XNAs) to include functional groups that enhance protein target binding affinity offers a promising route to therapeutic aptamers with high biological stability. Here we describe the chemical synthesis and polymerase recognition of 10 chemically diverse functional groups introduced at the C-5 position of α-l-threofuranosyl uridine nucleoside triphosphate (tUTP). We show that the set of tUTP substrates is universally recognized by the laboratory-evolved polymerase Kod-RSGA. Insights into the mechanism of TNA synthesis were obtained from a high-resolution X-ray crystal structure of the postcatalytic complex bound to the primer-template duplex. A structural analysis reveals a large cavity in the enzyme active site that can accommodate the side chain of C-5-modified tUTP substrates. Our findings expand the chemical space of evolvable nucleic acid systems by providing a synthetic route to artificial genetic polymers that are uniformly modified with diversity-enhancing functional groups.


Assuntos
DNA Polimerase Dirigida por DNA , Tetroses , Uridina Trifosfato , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Nucleosídeos/química , Ligação Proteica , Tetroses/síntese química , Tetroses/química , Tetroses/metabolismo , Thermococcus/enzimologia , Uridina Trifosfato/análogos & derivados , Uridina Trifosfato/síntese química , Uridina Trifosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...