Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963401

RESUMO

Gene therapy is pivotal in nanomedicine, offering a versatile approach to disease treatment. This study aims to achieve an optimal balance between biocompatibility and efficacy, which is a common challenge in the field. A copolymer library is synthesized, incorporating niacin-derived monomers 2-acrylamidoethyl nicotinate (AAEN) or 2-(acryloyloxy)ethyl nicotinate (AEN) with N,N-(dimethylamino)ethyl acrylamide (DMAEAm) or hydrolysis-labile N,N-(dimethylamino)ethyl acrylate (DMAEA). Evaluation of the polymers' cytotoxicity profiles reveals that an increase in AAEN or DMAEA molar ratios correlates with improved biocompatibility. Remarkably, an increase in AAEN in both DMAEA and DMAEAm copolymers demonstrated enhanced transfection efficiencies of plasmid DNA in HEK293T cells. Additionally, the top-performing polymers demonstrate promising gene expression in challenging-to-transfect cells (THP-1 and Jurkat cells) and show no significant effect on modulating immune response induction in ex vivo treated murine monocytes. Overall, the best performing candidates exhibit an optimal balance between biocompatibility and efficacy, showcasing potential advancements in gene therapy.

2.
Macromol Biosci ; : e2400002, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484731

RESUMO

Polymeric nanoparticles (NPs) with an integrated dual delivery system enable the controlled release of bioactive molecules and drugs, providing therapeutic advantages. Key design targets include high biocompatibility, cellular uptake, and encapsulating efficiency. In this study, a polymer library derived from niacin, also known as vitamin B3 is synthesized. The library comprises poly(2-(acryloyloxy)ethyl nicotinate) (PAEN), poly(2-acrylamidoethyl nicotinate) (PAAEN), and poly(N-(2-acrylamidoethyl)nicotinamide) (PAAENA), with varying hydrophilicity in the backbone and pendant group linker. All polymers are formulated, and those with increased hydrophobicity yield NPs with homogeneous spherical distribution and diameters below 150 nm, as confirmed by scanning electron microscopy and dynamic light scattering. Encapsulation studies utilizing a model drug, neutral lipid orange (NLO), reveal the influence of polymer backbone on encapsulation efficiency. Specifically, efficiencies of 46% and 96% are observed with acrylate and acrylamide backbones, respectively. Biological investigations showed that P(AEN) and P(AAEN) NPs are non-toxic up to 300 µg mL-1, exhibit superior cellular uptake, and boost cell metabolic activity. The latter is attributed to the cellular release of niacin, a precursor to nicotinamide adenine dinucleotide (NAD), a central coenzyme in metabolism. The results underline the potential of nutrient-derived polymers as pro-nutrient and drug-delivery materials.

3.
Macromol Rapid Commun ; 45(7): e2300649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195002

RESUMO

In the field of gene delivery, hydrophobic cationic copolymers hold great promise. They exhibit improved performance by effectively protecting genetic material from serum interactions while facilitating interactions with cellular membranes. However, managing cytotoxicity remains a significant challenge, prompting an investigation into suitable hydrophobic components. A particularly encouraging approach involves integrating nutrient components, like lipoic acid, which is known for its antioxidant properties and diverse cellular benefits such as cellular metabolism and growth. In this study, a copolymer library comprising 2-(dimethylamino)ethyl methacrylate (DMAEMA) and lipoic acid methacrylate (LAMA), combined with either n-butyl methacrylate (nBMA), ethyl methacrylate (EMA), or methyl methacrylate (MMA), is synthesized. This enables to probe the impact of lipoic acid incorporation while simultaneously exploring the influence of pendant acyclic alkyl chain length. The inclusion of lipoic acid results in a notable boost in transfection efficiency  while maintaining low cytotoxicity. Interestingly, higher levels of transfection efficiency are achieved in the presence of nBMA, EMA, or MMA. However, a positive correlation between pendant acyclic alkyl chain length and cytotoxicity is observed. Consequently, P(DMAEMA-co-LAMA-co-MMA), emerges as a promising candidate. This is attributed to the optimal combination of low cytotoxic MMA and transfection-boosting LAMA, highlighting the crucial synergy between LAMA and MMA.


Assuntos
Nylons , Ácido Tióctico , Ácido Tióctico/farmacologia , Técnicas de Transferência de Genes , Polímeros/química , Metacrilatos/química , Transfecção
4.
J Nanobiotechnology ; 20(1): 336, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842657

RESUMO

Cationic non-viral vectors show great potential to introduce genetic material into cells, due to their ability to transport large amounts of genetic material and their high synthetic versatility. However, designing materials that are effective without showing toxic effects or undergoing non-specific interactions when applied systemically remains a challenge. The introduction of shielding polymers such as polyethylene glycol (PEG) can enhance biocompatibility and circulation time, however, often impairs transfection efficiency. Herein, a multicomponent polymer system is introduced, based on cationic and hydrophobic particles (P(nBMA46-co-MMA47-co-DMAEMA90), (PBMD)) with high delivery performance and a pH-responsive block copolymer (poly((N-acryloylmorpholine)-b-(2-(carboxy)ethyl acrylamide)) (P(NAM72-b-CEAm74), PNC)) as shielding system, with PNAM as alternative to PEG. The pH-sensitive polymer design promotes biocompatibility and excellent stability at extracellular conditions (pH 7.4) and also allows endosomal escape and thus high transfection efficiency under acidic conditions. PNC shielded particles are below 200 nm in diameter and showed stable pDNA complexation. Further, interaction with human erythrocytes at extracellular conditions (pH 7.4) was prevented, while acidic conditions (pH 6) enabled membrane leakage. The particles demonstrate transfection in adherent (HEK293T) as well as difficult-to-transfect suspension cells (K-562), with comparable or superior efficiency compared to commercial linear poly(ethylenimine) (LPEI). Besides, the toxicity of PNC-shielded particles was significantly minimized, in particular in K-562 cells and erythrocytes. In addition, a pilot in vivo experiment on bone marrow blood cells of mice that were injected with PNC-shielded particles, revealed slightly enhanced cell transfection in comparison to naked pDNA. This study demonstrates the applicability of cationic hydrophobic polymers for transfection of adherent and suspension cells in culture as well as in vivo by co-formulation with pH-responsive shielding polymers, without substantially compromising transfection performance.


Assuntos
Polietilenoglicóis , Polímeros , Animais , Cátions , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Polietilenoglicóis/química , Polímeros/química , Transfecção
5.
Anal Chim Acta ; 1205: 339741, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414386

RESUMO

Hydrodynamic and light scattering methods are urgently required for accurate characterization of nanoparticles (NPs) in the field of nanomedicine to unveil their sizes and distributions. A fundamental characterization approach in the field of nanomedicines is, next to standard batch dynamic light scattering (DLS) and increasingly more applied (asymmetrical flow) field-flow fractionation (FFF) coupled to multi-angle laser light scattering (MALLS), the utilization of an analytical ultracentrifuge (AUC). Here, we demonstrate the power of an AUC in comparison to batch DLS and FFF-MALLS to decipher, in detail, the size and dispersity of pharma-relevant, commercial and in-house prepared soft matter NPs, suitable for life science applications. In this study, size and dispersity of poly(lactic-co-glycolic acid) (PLGA) NPs and in-house prepared NPs, consisting of the commercially available pharmapolymer Eudragit® E or of a polymer of similar composition synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, were investigated. Simultaneously, an insight on the presence of the utilized surfactant on the NP formulations, which is usually limited with other techniques, could be achieved by multi-speed experiments with the AUC in one experimental setting. While the repeatability and ruggedness of observations with modern AUC instruments of the newest generation is demonstrated, the results are further underpinned by the classical relations of hydrodynamics. Investigations aiming at hydrodynamic diameters (from DLS) and radii of gyration (from FFF-MALLS) are critically discussed and compared to the repeatable and rugged investigations by an AUC. The latter is proven to provide a self-sufficient experimental approach for NP characterization in the field of nanomedicine based on absolute principles, compares well to FFF-MALLS, and can unravel issues in NP sizing that arise when more common techniques, such as DLS, are used.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Difusão Dinâmica da Luz , Fracionamento por Campo e Fluxo/métodos , Nanomedicina , Tamanho da Partícula
6.
J Nanobiotechnology ; 19(1): 292, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579715

RESUMO

Cationic polymers have been widely studied for non-viral gene delivery due to their ability to bind genetic material and to interact with cellular membranes. However, their charged nature carries the risk of increased cytotoxicity and interaction with serum proteins, limiting their potential in vivo application. Therefore, hydrophilic or anionic shielding polymers are applied to counteract these effects. Herein, a series of micelle-forming and micelle-shielding polymers were synthesized via RAFT polymerization. The copolymer poly[(n-butyl acrylate)-b-(2-(dimethyl amino)ethyl acrylamide)] (P(nBA-b-DMAEAm)) was assembled into cationic micelles and different shielding polymers were applied, i.e., poly(acrylic acid) (PAA), poly(4-acryloyl morpholine) (PNAM) or P(NAM-b-AA) block copolymer. These systems were compared to a triblock terpolymer micelle comprising PAA as the middle block. The assemblies were investigated regarding their morphology, interaction with pDNA, cytotoxicity, transfection efficiency, polyplex uptake and endosomal escape. The naked cationic micelle exhibited superior transfection efficiency, but increased cytotoxicity. The addition of shielding polymers led to reduced toxicity. In particular, the triblock terpolymer micelle convinced with high cell viability and no significant loss in efficiency. The highest shielding effect was achieved by layering micelles with P(NAM-b-AA) supporting the colloidal stability at neutral zeta potential and completely restoring cell viability while maintaining moderate transfection efficiencies. The high potential of this micelle-layer-combination for gene delivery was illustrated for the first time.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Polímeros , Resinas Acrílicas , Animais , Cátions , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Micelas , Plasmídeos , Polimerização , Transfecção
7.
J Nanobiotechnology ; 19(1): 70, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676500

RESUMO

Although there has been substantial progress in the research field of gene delivery, there are some challenges remaining, e.g. there are still cell types such as primary cells and suspension cells (immune cells) known to be difficult to transfect. Cationic polymers have gained increasing attention due to their ability to bind, condense and mask genetic material, being amenable to scale up and highly variable in their composition. In addition, they can be combined with further monomers exhibiting desired biological and chemical properties, such as antioxidative, pH- and redox-responsive or biocompatible features. By introduction of hydrophobic monomers, in particular as block copolymers, cationic micelles can be formed possessing an improved chance of transfection in otherwise challenging cells. In this study, the antioxidant biomolecule lipoic acid, which can also be used as crosslinker, was incorporated into the hydrophobic block of a diblock copolymer, poly{[2-(dimethylamino)ethyl methacrylate]101-b-[n-(butyl methacrylate)124-co-(lipoic acid methacrylate)22]} (P(DMAEMA101-b-[nBMA124-co-LAMA22])), synthesized by RAFT polymerization and assembled into micelles (LAMA-mic). These micelles were investigated regarding their pDNA binding, cytotoxicity mechanisms and transfection efficiency in K-562 and HEK293T cells, the former representing a difficult to transfect, suspension leukemia cell line. The LAMA-mic exhibited low cytotoxicity at applied concentrations but demonstrated superior transfection efficiency in HEK293T and especially K-562 cells. In-depth studies on the transfection mechanism revealed that transfection efficiency in K-562 cells does not depend on the specific oncogenic fusion gene BCR-ABL alone. It is independent of the cellular uptake of polymer-pDNA complexes but correlates with the endosomal escape of the LAMA-mic. A comparison of the transfection efficiency of the LAMA-mic with structurally comparable micelles without lipoic acid showed that lipoic acid is not solely responsible for the superior transfection efficiency of the LAMA-mic. More likely, a synergistic effect of the antioxidative lipoic acid and the micellar architecture was identified. Therefore, the incorporation of lipoic acid into the core of hydrophobic-cationic micelles represents a promising tailor-made transfer strategy, which can potentially be beneficial for other difficult to transfect cell types.


Assuntos
Técnicas de Transferência de Genes , Leucemia/genética , Leucemia/terapia , Micelas , Polímeros/química , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Animais , Antioxidantes , Cátions , Linhagem Celular Tumoral , DNA/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Camundongos , Plasmídeos , Transfecção
8.
Int J Pharm ; 593: 120080, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33246046

RESUMO

Cationic polymers are promising gene delivery vectors due to their ability to bind and protect genetic material. The introduction of hydrophobic moieties into cationic polymers can further improve the vector efficiency, but common formulations of hydrophobic polymers involve harsh conditions such as organic solvents, impairing intactness and loading efficiency of the genetic material. In this study, a mild, aqueous formulation method for the encapsulation of high amounts of genetic material is presented. A well-defined pH-responsive hydrophobic copolymer, i.e. poly((n-butylmethacrylate)-co-(methylmethacrylate)-co-(2-(dimethylamino) ethylmethacrylate)), (PBMD) was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Exploiting the pH-dependent solubility behavior of the polymer, stable pDNA loaded nanoparticles were prepared and characterized using analytical ultracentrifugation (AUC), cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). This novel formulation approach showed high transfection efficiencies in HEK293T cells, while requiring 5- to 10-fold less pDNA compared to linear polyethylenimine (LPEI), in particular at short incubation times and in serum-containing media. Furthermore, the formulation was successfully adopted for siRNA and mRNA encapsulation and the commercially approved polymer Eudragit® E(PO/100). Overall, the aqueous formulation approach, accompanied by a tailor-made hydrophobic polymer and detailed physicochemical and application studies, led to improved gene delivery vectors with high potential for further applications.


Assuntos
Técnicas de Transferência de Genes , Polímeros , Cátions , Células HEK293 , Humanos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...