Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(8): 5537-5550, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717637

RESUMO

PURPOSE: The aim of this work was to test the implementation of small field dosimetry following TRS-483 and to develop quality assurance procedures for the experimental determination of small field output factors (SFOFs). MATERIALS AND METHODS: Twelve different centers provided SFOFs determined with various detectors. Various linac models using the beam qualities 6 MV and 10 MV with flattening filter and without flattening filter were utilized to generate square fields down to a nominal field size of 0.5 cm × 0.5 cm. The detectors were positioned at 10 cm depth in water. Depending on the local situation, the source-to-surface distance was either set to 90 cm or 100 cm. The SFOFs were normalized to the output of the 10 cm × 10 cm field. The spread of SFOFs measured with different detectors was investigated for each individual linac beam quality and field size. Additionally, linac-type specific SFOF curves were determined for each beam quality and the SFOFs determined using individual detectors were compared to these curves. Example uncertainty budgets were established for a solid state detector and a micro ionization chamber. RESULTS: The spread of SFOFs for each linac and field was below 5% for all field sizes. With the exception of one linac-type, the SFOFs of all investigated detectors agreed within 10% with the respective linac-type SFOF curve, indicating a potential inter-detector and inter-linac variability. CONCLUSION: Quality assurance on the SFOF measurements can be done by investigation of the spread of SFOFs measured with multiple detectors and by comparison to linac-type specific SFOFs. A follow-up of a measurement session should be conducted if the spread of SFOFs is larger than 5%, 3%, and 2% for field sizes of 0.5 cm × 0.5 cm, 1 cm × 1 cm, and field sizes larger than 2 cm × 2 cm, respectively. Additionally, deviations of measured SFOFs to the linac-type-curves of more than 7%, 3%, and 2% for field sizes 0.5 cm × 0.5 cm, 1 cm × 1 cm, and field sizes larger than 1 cm × 1 cm, respectively, should be followed up.


Assuntos
Aceleradores de Partículas , Radiometria , Fótons , Incerteza , Água
2.
J Med Phys ; 46(1): 47-51, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267489

RESUMO

There are well established dosimetry reference standards for broad beams; however, there are no reference standards that can be used for both broad and small fields. The variation of the equivalent square fields and field output factors in small static photon fields when using a synthetic diamond, an electron diode, and ionization chambers (pin point, semiflex, and liquid filled) was investigated over time. Data from this study were compared to the data from other hospitals in the country and standard data sets, i.e., the British Journal of Radiology Supplement No. 25 of 1996 (BJR25) and the Radiological Physics Centre (RPC) 2012 data. The results showed that reliance on one detector and one measurement session, could yield incorrect field output factors (FOFs) for small fields. At least one of the detectors should be a solid state type with published field output correction factors and at least three measurement sessions should be performed for each FOF data point. Comparing measured data with published datasets, like RPC, will assist in verifying data. BJR25 datasets should not be used for S clin ≤4 cm.

3.
J Med Phys ; 45(4): 256-260, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33953502

RESUMO

The IAEA TRS 483 has recommended that the orientation for cylindrical ionization chambers be perpendicular to the beam for small-field output factor (OF) measurements. The recommendation was based on the unavailability of field output correction factor data for measurements using parallel orientation at the time of publication. Two three-dimensional (3D) air ionization chambers were used to perform measurements in parallel and perpendicular orientations and compared to data determined using a PTW 31018. The aim of the study was to establish whether the 3D detectors behaved as spherical or cylindrical devices. From the results, it was confirmed that the PTW 31016 and PTW 31021 detectors are suitable for OF measurements in both orientations for field sizes down to an equivalent square field of 1.8 cm and 0.96 cm, respectively, using the field output correction factor data published in the IAEA TRS 483. The preferred orientation is parallel to the beam to facilitate beam profile measurements and minimize the irradiation of the chamber stem and detector cable and decrease the volume averaging factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...