Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nematol ; 54(1): 20220013, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35860510

RESUMO

Meloidogyne enterolobii and M. floridensis are virulent species that can overcome root-knot nematode resistance in economically important crops. Our objectives were to determine the effects of temperature on the infectivity of second-stage juveniles (J2) of these two species and determine differences in duration and thermal-time requirements (degree-days [DD]) to complete their developmental cycle. Florida isolates of M. enterolobii and M. floridensis were compared to M. incognita race 3. Tomato cv. BHN 589 seedlings following inoculation were placed in growth chambers set at constant temperatures of 25°C, and 30°C, and alternating temperatures of 30°C to 25°C (day-night). Root infection by the three nematode species was higher at 30°C than at 25°C, and intermediate at 30°C to 25°C, with 33%, 15%, and 24% infection rates, respectively. There was no difference, however, in the percentages of J2 that infected roots among species at each temperature. Developmental time from infective J2 to reproductive stage for the three species was shorter at 30°C than at 25°C, and 30°C to 25°C. The shortest time and DD to egg production for the three species were 13 days after inoculation (DAI) and 285.7 DD, respectively. During the experimental timeframe of 29 d, a single generation was completed at 30°C for all three species, whereas only M. floridensis completed a generation at 30°C to 25°C. The number of days and accumulated DD for completing the life cycle (from J2 to J2) were 23 d and 506.9 DD for M. enterolobii, and 25 d and 552.3 DD for M. floridensis and M. incognita, respectively. Exposure to lower (25°C) and intermediate temperatures (30°C to 25°C) decreased root penetration and slowed the developmental cycle of M. enterolobii and M. floridensis compared with 30°C.

2.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-35174334

RESUMO

Cultivar Flordaguard is suggested as a root-knot nematode (RKN) resistant rootstock for Florida peaches, however, RKN disease has been observed on this rootstock in peach orchards. Our goal was to confirm whether the RKN resistance breaking isolates of M. floridensis and M. arenaria indeed could infect and reproduce on the peach rootstock cv. Flordaguard in both laboratory and field studies. Root galling occurred on all peach cultivars evaluated including Flordaguard, Flordaglo, Okinawa, and Lovell, in the presence of the RKN resistance-breaking isolates of M. floridensis (MfGnv14) and two M. arenaria isolates (Ma1 and Ma2). These rootstocks showed varying degrees of susceptibility (to a lesser extent in Okinawa) to these three RKN resistance-breaking isolates. The importance of nematode inoculum concentrations in differentiating between resistance and susceptible plants was demonstrated, and thus are an important factor to consider in nematode resistance breeding programs. In host differential tests the peach-originated isolates of M. floridensis and M. arenaria behaved similarly with the vegetable-originated isolates of M. floridensis on tomato, peanut, watermelon, and tobacco, but showed variable host responses on cotton and pepper. The two M. arenaria isolates from peach reproduced on pepper but not on peanut. To our knowledge this is the first report of M. arenaria race 3 infecting Flordaguard and pepper in Florida. Soil and root samples collected from cv. Flordaguard infected trees at two commercial peach orchards showed that M. floridensis and M. arenaria were established on the rootstock.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...