Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Plant Sci ; 13: 1036973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438093

RESUMO

Rhizobium spp. is a well-known microbial plant biostimulant in non-legume crops, but little is known about the mechanisms by which rhizobia enhance crop productivity under drought stress. This work analyzed the mechanisms involved in drought stress alleviation exerted by Rhizobium leguminosarum strains in wheat plants under water shortage conditions. Two (LBM1210 and LET4910) of the four R. leguminosarum strains significantly improved the growth parameters (fresh and dry aerial weight, FW and DW, respectively), chlorophyll content, and relative water content (RWC) compared to a non-inoculated control under water stress, providing values similar to or even higher for FW (+4%) and RWC (+2.3%) than the non-inoculated and non-stressed control. Some other biochemical parameters and gene expression explain the observed drought stress alleviation, namely the reduction of MDA, H2O2 (stronger when inoculating with LET4910), and ABA content (stronger when inoculating with LBM1210). In agreement with these results, inoculation with LET4910 downregulated DREB2 and CAT1 genes in plants under water deficiency and upregulated the CYP707A1 gene, while inoculation with LBM1210 strongly upregulated the CYP707A1 gene, which encodes an ABA catabolic enzyme. Conversely, from our results, ethylene metabolism did not seem to be involved in the alleviation of drought stress exerted by the two strains, as the expression of the CTR1 gene was very similar in all treatments and controls. The obtained results regarding the effect of the analyzed strains in alleviating drought stress are very relevant in the present situation of climate change, which negatively influences agricultural production.

2.
J Phys Chem C Nanomater Interfaces ; 126(29): 12074-12081, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35928240

RESUMO

Shell-isolated nanoparticles (SHINs) with a 37 nm gold core and an 11 nm tin dioxide (SnO2) coating exhibited long-life Raman enhancement for 3 months and a wide pH stability of pH 2-13 in comparison with conventional SiO2-coated SHINs. Herein, Au-SnO2 is demonstrated as a more durable SHIN for use in the technique Shell-Isolated Nanoparticles for Enhanced Raman Spectroscopy (SHINERS).

3.
J Oncol Pharm Pract ; 28(2): 362-372, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33573462

RESUMO

INTRODUCTION: The aim of this study is to compare productivity of the KIRO Oncology compounding robot in three hospital pharmacy departments and identify the key factors to predict and optimize automatic compounding time. METHODS: The study was conducted in three hospitals. Each hospital compounding workload and workflow were analyzed. Data from the robotic compounding cycles from August 2017 to July 2018 were retrospectively obtained. Nine cycle specific parameters and five productivity indicators were analysed in each site. One-to-one differences between hospitals were evaluated. Next, a correlation analysis between cycle specific factors and productivity indicators was conducted; the factors presenting a highest correlation to automatic compounding time were used to develop a multiple regression model (afterwards validated) to predict the automatic compounding time. RESULTS: A total of 2795 cycles (16367 preparations) were analysed. Automatic compounding time showed a relevant positive correlation (ǀrs|>0.40) with the number of preparations, number of vials and total volume per cycle. Therefore, these cycle specific parameters were chosen as independent variables for the mathematical model. Considering cycles lasting 40 minutes or less, predictability of the model was high for all three hospitals (R2:0.81; 0.79; 0.72). CONCLUSION: Workflow differences have a remarkable incidence in the global productivity of the automated process. Total volume dosed for all preparations in a cycle is one of the variables with greater influence in automatic compounding time. Algorithms to predict automatic compounding time can be useful to help users in order to plan the cycles launched in KIRO Oncology.


Assuntos
Antineoplásicos , Serviço de Farmácia Hospitalar , Procedimentos Cirúrgicos Robóticos , Robótica , Composição de Medicamentos , Humanos , Estudos Retrospectivos
4.
Entropy (Basel) ; 23(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209743

RESUMO

This study proposes a method for identifying and evaluating driving risk as a first step towards calculating premiums in the newly emerging context of usage-based insurance. Telematics data gathered by the Internet of Vehicles (IoV) contain a large number of near-miss events which can be regarded as an alternative for modeling claims or accidents for estimating a driving risk score for a particular vehicle and its driver. Poisson regression and negative binomial regression are applied to a summary data set of 182 vehicles with one record per vehicle and to a panel data set of daily vehicle data containing four near-miss events, i.e., counts of excess speed, high speed brake, harsh acceleration or deceleration and additional driving behavior parameters that do not result in accidents. Negative binomial regression (AICoverspeed = 997.0, BICoverspeed = 1022.7) is seen to perform better than Poisson regression (AICoverspeed = 7051.8, BICoverspeed = 7074.3). Vehicles are separately classified to five driving risk levels with a driving risk score computed from individual effects of the corresponding panel model. This study provides a research basis for actuarial insurance premium calculations, even if no accident information is available, and enables a precise supervision of dangerous driving behaviors based on driving risk scores.

5.
Accid Anal Prev ; 150: 105865, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33276187

RESUMO

Reference charts are widely used as a graphical tool for assessing and monitoring children's growth given gender and age. Here, we propose a similar approach to the assessment of driving risk. Based on telematics data, and using quantile regression models, our methodology estimates the percentiles of the distance driven at speeds above the legal limit depending on drivers' characteristics and the journeys made. We refer to the resulting graphs as percentile charts for speeding and illustrate their use for a sample of drivers with Pay-How-You-Drive insurance policies. We find that percentiles of distance driven at excessive speeds depend mainly on total distance driven, the percentage of driving in urban areas and the driver's gender. However, the impact on the estimated percentile for these covariates is not constant. We conclude that the heterogeneity in the risk of driving long distances above the speed limit can be easily represented using reference charts and that, conversely, individual drivers can be scored by calculating an estimated percentile for their specific case. The dynamics of this risk score can be assessed by recording drivers as they accumulate driving experience and cover more kilometres. Our methodology should be useful for accident prevention and, in the context of Manage-How-You-Drive insurance, reference charts can provide real-time alerts and enhance recommendations for ensuring safety.


Assuntos
Condução de Veículo , Seguro , Prevenção de Acidentes , Acidentes de Trânsito/prevenção & controle , Criança , Humanos
6.
Plant Cell ; 32(12): 3902-3920, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037147

RESUMO

Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis (Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4 protease.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Proteases/metabolismo , Proteômica , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia , Proteínas Relacionadas à Autofagia/genética , Cisteína Proteases/genética , Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfetos/metabolismo
7.
Sensors (Basel) ; 20(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397508

RESUMO

With the major advances made in internet of vehicles (IoV) technology in recent years, usage-based insurance (UBI) products have emerged to meet market needs. Such products, however, critically depend on driving risk identification and driver classification. Here, ordinary least square and binary logistic regressions are used to calculate a driving risk score on short-term IoV data without accidents and claims. Specifically, the regression results reveal a positive relationship between driving speed, braking times, revolutions per minute and the position of the accelerator pedal. Different classes of risk drivers can thus be identified. This study stresses both the importance and feasibility of using sensor data for driving risk analysis and discusses the implications for traffic safety and motor insurance.

8.
ACS Appl Mater Interfaces ; 12(24): 27150-27165, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32441912

RESUMO

Modification of electronic and chemical properties of a material by the introduction of another element into its lattice is one of the most common methods for designing new catalysts for different applications. In this work the effect of modifying molybdenum carbide with transition metals (Fe, Co, Ni, Cu), TM-Mo2C composites, upon the catalytic activity toward hydrogen evolution reaction (HER) in mild acidic and alkaline media has been studied. Catalysts were prepared by carbothermal reduction of molybdenum and TM oxides precursors and were characterized by different physicochemical techniques. Results evidenced a strong pH effect on the catalytic performance of TM-Mo2C, while, at pH = 5, inclusion of TM into the Mo2C lattice has a deleterious effect on the HER activity and, at pH = 9, a promoting effect was observed, highlighting the importance of considering specific operation conditions during the catalyst design process. Analysis of in situ near-edge X-ray adsorption data reveals a decrease on the oxidation state and average bond ionicity of dopant metal upon a pH increase, shedding light of the different effects of TMs on the resulting HER activity in acidic and alkaline media. Finally, stability tests demonstrated no deterioration on catalysts' performance after 8 h of continuous cycling within the HER working range, confirming the suitability of Mo2C materials as promising HER catalysts.

9.
Chemphyschem ; 20(22): 3045-3055, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31342615

RESUMO

In the present work, the Pt(111) surface was disordered by controlling the density of {110}- and {100}-type defects. The cyclic voltammogram (CV) of a disordered surface in acid media consists of three contributions within the hydrogen adsorption/desorption region: one from the well-ordered Pt(111) symmetry and the other two transformed from the {111}-symmetry with contributions of {110}- and {100}-type surface defects. The ethanol oxidation reaction (EOR) was studied on these disordered surfaces. Electrochemical studies were performed in 0.1 M HClO4 +0.1 M ethanol using cyclic voltammetry and chronoamperometry. Changes in current densities associated to the specific potentials at which each oxidation peak appears suggest that different surface domains of disordered platinum oxidize ethanol independently. Additionally, as the surface-defect density increases, the EOR is catalysed better. This tendency is directly observed from the CV parameters because the onset and peak potentials are shifted to less positive values and accompanied by increases in the oxidation-peak current on disordered surfaces. Similarly, the CO oxidation striping confirmed this same tendency. Chronoamperometric experiments showed two opposite behaviors at short oxidation times (0.1 s). The EOR was quickly catalyzed on the most disordered surface, Pt(111)-16, and was then rapidly deactivated. These results provide fundamental information on the EOR, which contributes to the atomic-level understanding of real catalysts.

10.
Plant Cell Environ ; 42(9): 2696-2714, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31152467

RESUMO

Cadmium treatment induces transient peroxisome proliferation in Arabidopsis leaves. To determine whether this process is regulated by pexophagy and to identify the mechanisms involved, we analysed time course-dependent changes in ATG8, an autophagy marker, and the accumulation of peroxisomal marker PEX14a. After 3 hr of Cd exposure, the transcript levels of ATG8h, ATG8c, a, and i were slightly up-regulated and then returned to normal. ATG8 protein levels also increased after 3 hr of Cd treatment, although an opposite pattern was observed in PEX14. Arabidopsis lines expressing GFP-ATG8a and CFP-SKL enabled us to demonstrate the presence of pexophagic processes in leaves. The Cd-dependent induction of pexophagy was demonstrated by the accumulation of peroxisomes in autophagy gene (ATG)-related Arabidopsis knockout mutants atg5 and atg7. We show that ATG8a colocalizes with catalase and NBR1 in the electron-dense peroxisomal core, thus suggesting that NBR1 may be an autophagic receptor for peroxisomes, with catalase being possibly involved in targeting pexophagy. Protein carbonylation and peroxisomal redox state suggest that protein oxidation may trigger pexophagy. Cathepsine B, legumain, and caspase 6 may also be involved in the regulation of pexophagy. Our results suggest that pexophagy could be an important step in rapid cell responses to cadmium.


Assuntos
Arabidopsis/metabolismo , Cádmio/metabolismo , Macroautofagia , Peroxissomos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Estresse Oxidativo , Proteólise
11.
J Exp Bot ; 70(16): 4251-4265, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31087094

RESUMO

Two cysteine metabolism-related molecules, hydrogen sulfide and hydrogen cyanide, which are considered toxic, have now been considered as signaling molecules. Hydrogen sulfide is produced in chloroplasts through the activity of sulfite reductase and in the cytosol and mitochondria by the action of sulfide-generating enzymes, and regulates/affects essential plant processes such as plant adaptation, development, photosynthesis, autophagy, and stomatal movement, where interplay with other signaling molecules occurs. The mechanism of action of sulfide, which modifies protein cysteine thiols to form persulfides, is related to its chemical features. This post-translational modification, called persulfidation, could play a protective role for thiols against oxidative damage. Hydrogen cyanide is produced during the biosynthesis of ethylene and camalexin in non-cyanogenic plants, and is detoxified by the action of sulfur-related enzymes. Cyanide functions include the breaking of seed dormancy, modifying the plant responses to biotic stress, and inhibition of root hair elongation. The mode of action of cyanide is under investigation, although it has recently been demonstrated to perform post-translational modification of protein cysteine thiols to form thiocyanate, a process called S-cyanylation. Therefore, the signaling roles of sulfide and most probably of cyanide are performed through the modification of specific cysteine residues, altering protein functions.


Assuntos
Arabidopsis/metabolismo , Cianetos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais
12.
Accid Anal Prev ; 123: 99-106, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30472530

RESUMO

The use of advanced driver assistance systems and the transition towards semi-autonomous vehicles are expected to contribute to a lower frequency of motor accidents and to have a significant impact for the automobile insurance industry, as rating methods must be revised to ensure that risks are correctly measured. Telematics information and usage-based insurance research are analyzed to identify the effect of driving patterns on the risk of accident. This is used as a starting point for addressing risk quantification and safety for vehicles that can control speed. The effect of excess speed on the risk of accidents is estimated with a real telematics data set. Scenarios for a reduction of speed limit violations and the consequent decrease in the expected number of accident claims are shown. If excess speed could be eliminated, then the expected number of accident claims could be reduced to half of its initial value, applying the average conditions of the data used in this study. As a consequence, insurance premiums also diminish.


Assuntos
Acidentes de Trânsito/prevenção & controle , Automação , Condução de Veículo/legislação & jurisprudência , Veículos Automotores/classificação , Acidentes de Trânsito/estatística & dados numéricos , Humanos , Seguro/estatística & dados numéricos , Distribuição de Poisson
13.
Risk Anal ; 39(3): 662-672, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30566751

RESUMO

Most automobile insurance databases contain a large number of policyholders with zero claims. This high frequency of zeros may reflect the fact that some insureds make little use of their vehicle, or that they do not wish to make a claim for small accidents in order to avoid an increase in their premium, but it might also be because of good driving. We analyze information on exposure to risk and driving habits using telematics data from a pay-as-you-drive sample of insureds. We include distance traveled per year as part of an offset in a zero-inflated Poisson model to predict the excess of zeros. We show the existence of a learning effect for large values of distance traveled, so that longer driving should result in higher premiums, but there should be a discount for drivers who accumulate longer distances over time due to the increased proportion of zero claims. We confirm that speed limit violations and driving in urban areas increase the expected number of accident claims. We discuss how telematics information can be used to design better insurance and to improve traffic safety.

14.
Plant Physiol ; 171(2): 1378-91, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208225

RESUMO

Accumulating experimental evidence in mammalian, and recently plant, systems has led to a change in our understanding of the role played by hydrogen sulfide in life processes. In plants, hydrogen sulfide mitigates stress and regulates important plant processes such as photosynthesis, stomatal movement, and autophagy, although the underlying mechanism is not well known. In this study, we provide new experimental evidence that, together with our previous findings, demonstrates the role of hydrogen sulfide in regulating autophagy. We used green fluorescent protein fluorescence associated with autophagic bodies and immunoblot analysis of the ATG8 protein to show that sulfide (and no other molecules such as sulfur-containing molecules or ammonium) was able to inhibit the autophagy induced in Arabidopsis (Arabidopsis thaliana) roots under nitrogen deprivation. Our results showed that sulfide was unable to scavenge reactive oxygen species generated by nitrogen limitation, in contrast to well-established reducers. In addition, reducers were unable to inhibit the accumulation of autophagic bodies and ATG8 protein forms to the same extent as sulfide. Therefore, we conclude that sulfide represses autophagy via a mechanism that is independent of redox conditions.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/farmacologia , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Nitrogênio/metabolismo , Fenótipo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Superóxidos/metabolismo
15.
Amino Acids ; 47(10): 2155-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24990521

RESUMO

Cysteine (Cys) is the first organic compound containing reduced sulfur that is synthesized in the last stage of plant photosynthetic assimilation of sulfate. It is a very important metabolite not only because it is crucial for the structure, function and regulation of proteins but also because it is the precursor molecule of an enormous number of sulfur-containing metabolites essential for plant health and development. The biosynthesis of Cys is accomplished by the sequential reaction of serine acetyltransferase (SAT) and O-acetylserine(thiol)synthase (OASTL). In Arabidopsis thaliana, the analysis of specific mutants of members of the SAT and OASTL families has demonstrated that the cytosol is the compartment where the bulk of Cys synthesis takes place and that the cytosolic OASTL enzyme OAS-A1 is the responsible enzyme. Another member of the OASTL family is DES1, a novel L-cysteine desulfhydrase that catalyzes the desulfuration of Cys to produce sulfide, thus acting in a manner opposite to that of OAS-A1. Detailed studies of the oas-a1 and des1 null mutants have revealed the involvement of the DES1 and OAS-A1 proteins in coordinate regulation of Cys homeostasis and the generation of sulfide in the cytosol for signaling purposes. Thus, the levels of Cys in the cytosol strongly affect plant responses to both abiotic and biotic stress conditions, while sulfide specifically generated from the degradation of Cys negatively regulates autophagy induced in different situations. In conclusion, modulation of the levels of Cys and sulfide is likely critical for plant performance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Transdução de Sinais , Sulfetos/metabolismo , Homeostase
16.
Front Plant Sci ; 5: 683, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538717

RESUMO

Hydrogen sulfide is an important signaling molecule that functions as a physiological gasotransmitter of comparable importance to NO and CO in mammalian systems. In plants, numerous studies have shown that sulfide increases tolerance/resistance to stress conditions and regulates essential processes. The endogenous production of hydrogen sulfide in the cytosol of Arabidopsis thaliana occurs by the enzymatic desulfuration of L-cysteine, which is catalyzed by the L-cysteine desulfhydrase enzyme DES1. To define the functional role of DES1 and the role that the sulfide molecule may play in the regulation of physiological processes in plants, we studied the localization of the expression of this gene at the tissue level. Transcriptional data reveal that DES1 is expressed at all developmental stages and is more abundant at the seedling stage and in mature plants. At the tissue level, we analyzed the expression of a GFP reporter gene fused to promoter of DES1. The GFP fluorescent signal was detected in the cytosol of both epidermal and mesophyll cells, including the guard cells. GFP fluorescence was highly abundant around the hydathode pores and inside the trichomes. In mature plants, fluorescence was detected in floral tissues; a strong GFP signal was detected in sepals, petals, and pistils. When siliques were examined, the highest GFP fluorescence was observed at the bases of the siliques and the seeds. The location of GFP expression, together with the identification of regulatory elements within the DES1 promoter, suggests that DES1 is hormonally regulated. An increase in DES1 expression in response to ABA was recently demonstrated; in the present work, we observe that in vitro auxin treatment significantly repressed the expression of DES1.

17.
ScientificWorldJournal ; 2014: 521074, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180200

RESUMO

The impact of administrative costs on the distribution of terminal wealth is approximated using a simple formula applicable to many investment situations. We show that the reduction in median returns attributable to administrative fees is usually at least twice the amount of the administrative costs charged for most investment funds, when considering a risk-adjustment correction over a reasonably long-term time horizon. The example we present covers a number of standard cases and can be applied to passive investments, mutual funds, and hedge funds. Our results show investors the potential losses they face in performance due to administrative costs.


Assuntos
Investimentos em Saúde/economia , Modelos Econômicos , Análise Custo-Benefício , Investimentos em Saúde/organização & administração , Fatores de Risco , Fatores de Tempo
18.
Anal Chim Acta ; 844: 15-26, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25172811

RESUMO

A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments.


Assuntos
Eletrodos , Eletrólitos , Membranas Artificiais , Polímeros , Adsorção , Modelos Teóricos
19.
ScientificWorldJournal ; 2014: 510531, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24711728

RESUMO

We focus on automatic strategies to optimize life cycle savings and investment. Classical optimal savings theory establishes that, given the level of risk aversion, a saver would keep the same relative amount invested in risky assets at any given time. We show that, when optimizing lifecycle investment, performance and risk assessment have to take into account the investor's risk aversion and the maximum amount the investor could lose, simultaneously. When risk aversion and maximum possible loss are considered jointly, an optimal savings strategy is obtained, which follows from constant rather than relative absolute risk aversion. This result is fundamental to prove that if risk aversion and the maximum possible loss are both high, then holding a constant amount invested in the risky asset is optimal for a standard lifetime saving/pension process and outperforms some other simple strategies. Performance comparisons are based on downside risk-adjusted equivalence that is used in our illustration.


Assuntos
Financiamento Pessoal , Renda , Investimentos em Saúde/economia , Modelos Econômicos , Simulação por Computador , Humanos
20.
Mol Plant ; 7(2): 264-76, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24285094

RESUMO

Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.


Assuntos
Arabidopsis/metabolismo , Cisteína/metabolismo , Transdução de Sinais , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...