Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 237(Pt 2): 117009, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652217

RESUMO

Since the 1940s, per- and polyfluoroalkyl substances (PFAS) have been widely produced and used in various applications due to their unique properties. Consequently, the principal exposure routes of PFAS have been broadly studied, leading to the conclusion that dietary exposure (more specifically, the consumption of fish and seafood) was one of their main contributors. Thus, developing an analytical method that determines the level of PFAS in fish and seafood has become a relevant subject. In this work, a previous analytical method has been optimized to determine 12 PFAS in fish muscle from salmon, tuna, cod, hake, sardine, anchovy, and sole, as well as in seven different seafood species (i.e., cuttlefish, octopus, squid, shrimp, Norway lobster, prawn, and mussel) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Subsequently, the PFAS profile of the different species was studied to determine if it was consistent with that previously reviewed in the literature and to know the most relevant contribution of PFAS for each species. Finally, human exposure to PFAS through their consumption was estimated by the daily intake for seven different age/gender groups. PFAS were obtained from 0.014 to 0.818 ng g-1 wet weight in fish samples. Sardines, anchovies, and soles presented the highest PFAS levels. However, cod samples also showed some PFAS traces. Regarding seafood, PFAS levels range from 0.03 to 36.7 ng g-1 dry weight for the studied species. A higher concentration of PFAS has been found in the cephalopods' spleens and the crustaceans' heads. PFOS and PFBS were the predominant compounds in each seafood species, respectively. On the other hand, in the case of mussels, which are the less polluted species of the study, contamination by longer-chained PFAS was also observed. Finally, the total intake of PFAS due to fish and shellfish consumption for the Spanish adult population was estimated at 17.82 ng day-1. Nevertheless, none of the analyzed samples exceeded the European Food Safety Authority (EFSA) risk value for the supervised PFAS in any age/gender group reviewed.

2.
Anal Chim Acta ; 1276: 341563, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573101

RESUMO

Sulfamethoxazole (SMX) is one of the most widely used antibiotics worldwide and has been detected at high concentrations in wastewater treatment plant effluents and river waters. In this study, the SMX degradation process combining the simultaneous chlorine oxidation and UV photodegradation is assessed and compared with both photodegradation and chlorine oxidation processes individually. Photodegradation and Chlorine/UV tests were performed using Suntest CPS equipment. Different experimental techniques, including UV-Visible spectrophotometry and liquid chromatography coupled to a diode array detector and positive and negative ionization mass spectrometry (LC-DAD-MS-ESI(+)-ESI(-)), were used to evaluate the degradation reaction of SMX. All the analytical data generated have been processed with the Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) method to monitor, resolve, and identify the several transformation products generated during the studied degradation processes. A new data fusion analysis strategy is proposed to examine the three processes simultaneously (with only photodegradation, only chlorination, and simultaneous chlorination+photodegradation). Combined with the analysis of different analytical techniques individually (spectrophotometry, LC-DAD, and LC-MS), the fusion of all generated data improved the description of the degradation processes. Detection using DAD allowed a better correspondence among the species monitored spectrophotometrically (UV-Vis) with those analyzed chromatographically. On the other side, detection using MS in both positive and negative acquisition modes allowed resolving a larger number of chemical compounds (specially SMX degradation subproducts) that could not be detected by UV-Vis spectrometry. The results obtained permitted the comparison of the effects produced by the three different degradation processes.


Assuntos
Quimiometria , Sulfametoxazol , Halogenação , Fotólise , Cloro , Espectrofotometria/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida
3.
Talanta ; 239: 122953, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954462

RESUMO

A workflow is proposed for the study of the photodegradation process of the sulfamethoxazole (SMX) based on the combination of different experimental techniques, including liquid chromatography, mass spectrometry, UV-Visible spectrophotometry, and the treatment of all the analytical data with advanced chemometric methods. SMX, which is one of the most widely used antibiotics worldwide and has been found at remarkable concentrations in various rivers and effluents over all Europe, was degraded in the laboratory under a controlled source of UV radiation, which simulates the environmental solar radiation (Suntest). Kinetic monitoring of the photodegradation process was performed using UV-Visible spectrophotometric measurements and by further Liquid Chromatography with Diode Array Detector and Mass Spectrometry analysis (LC-DAD-MS). Additionally, the acid-base properties were also investigated to see how the pH can affect the speciation of this substance during the photodegradation process. Based on the Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) application, the proposed chemometric method coped with the large amounts of data generated by the different analytical techniques used to monitor the evolution of the photodegradation process. Their simultaneous analysis involved applying a data fusion strategy and an advanced MCR-ALS constrained analysis, which allowed and improved the description of the complete degradation process, detecting the different species of the reaction, and identifying the possible transformation products formed. A total number of six species were resolved in the degradation process of SMX. In addition to the initial SMX, a second species corresponded to a conformational isomer, and the other four species represented different photoproducts, which have also been identified. Furthermore, three different acid-base species of SMX were obtained, and their pKa values were estimated.


Assuntos
Quimiometria , Sulfametoxazol , Cromatografia Líquida , Análise dos Mínimos Quadrados , Análise Multivariada , Fotólise
4.
Anal Chim Acta ; 1113: 52-65, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32340669

RESUMO

The application of the recently developed area correlation constraint in Multivariate CurveResolution-Alternating Least Squares (MCR-ALS) for the quantitative determination of analyte mixtures is shown. The feasibility of the proposed constraint is tested firstly for the calibration and quantitation of PAHs mixtures in their synthetic mixtures (validation samples) and in river water samples dissolved organic matter (DOM) using EEM fluorescent three-way data. In this case, MCR-ALS results obtained with the proposed area correlation constraint are comparable with the results obtained with methods based on the fulfillment of the trilinear model, like PARAFAC and MCR-ALS with the trilinearity constraint. Secondly, the possibility of applying this new area correlation constraint is extended to the analytical determination of lipid mixtures in synthetic and cell culture samples by LC-MS, where the trilinear model does not hold. The applicability of the proposed area correlation constraint is assessed, and it is proposed as a general tool for the quantitative determination of unknown mixtures of analytes in complex natural samples with severe profile overlapping and unknown composition, whatever the data structure is.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...